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Introduction 1

Abstract

We consider the version of broadcast scheduling where a server can transmit one message of a given
set at each time-step, answering previously made requests for that message. The goal is to minimize the
average response time if the amount of requests is known in advance for each time-step and message.
We prove that this problem is NP-hard, thus answering an open question stated by Kalyanasundaram,
Pruhs and Velauthapillai (Proceedings of ESA 2000, LNCS 1879, 2000, pp. 290–301). Furthermore,
we present an approximation algorithm that is allowed to send several messages at once. Using 6
channels for transmissions, the algorithm achieves an average response time that is at least as good as
the optimal solution using one channel. The best previous approximation algorithm achieved ratio 1.5
with 6 channels and reached ratio 1 only in the case where there are as many channels as messages.

From the NP-hardness of broadcast scheduling we derive a new inapproximability result of (2−ε, 1)
for the (congestion,cost) bicriteria version of the single source unsplittable min-cost flow problem, for
arbitrary ε > 0. The result holds even in the often considered case where the maximum demand is less
than or equal to the minimum edge capacity (dmax ≤ umin), a case for which an algorithm with ratio
(3, 1) was presented by Skutella.

1 Introduction

We will first give a brief introduction to the two problems this paper is concerned with, then go into
previous work, and finally sketch the results presented.

Problem definition, notation: Broadcast Scheduling In the broadcast scheduling problem a (possibly
large) number of clients over time request messages Mi, i ∈ {1 . . . n}, from a server. They do this via a
slow channel, e.g. a modem connection. The server can answer these requests via one high-bandwidth
channel to which all clients are connected, e.g. a TV-cable, electrical power supply, or satellite. At
each time-step the server can broadcast one of the n messages. The goal is to minimize the average
response time2. Because several clients might request the same message it is possible to bundle answers.
The broadcast scheduling problem is gaining practical importance due to the increasing availability of
infrastructure that supports high-bandwidth broadcast and due to the growth of information-centric
applications [1].

Formally, an instance of the offline version of the problem is given by the number of requests for
message i at time t: Ri(t), for i ∈ {1 . . . n}, t ∈ {0 . . . T}. A (1-feasible) schedule is a set of values
S(t) ∈ {1 . . . n}, for t ∈ {1 . . . T +n}, that denote the message being broadcast at time-step t. Since there
are no requests after time T , we can assume that any schedule has satisfied all requests by time T + n.

Let δi(t) be the number of time-steps which pass until the server broadcasts message i after time t.
This is the time a request for Mi at t takes to be satisfied. Requests can at the earliest be satisfied
one time-step after they were made, so δi(t) ≥ 1. This leads to the following expression for the average
response time (ART): ∑

t

∑
i Ri(t) · δi(t)∑
t

∑
i Ri(t)

.

In the following the denominator will be ignored because it is constant for a fixed instance. We will
denote this problem by B|ri, pi = 1|∑Fi.

A natural generalization of the problem is to allow multiple channels for the responses. A schedule that
broadcasts at most s messages simultaneously (alternatively, a schedule that uses s broadcast channels)
is called an s-feasible schedule.

2The time a client has to wait on average until her request is satisfied.
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2 Introduction

Another interesting generalization, denoted by B|ri, pmtn|∑Fi, allows arbitrary length messages and
preemption. Furthermore the arrival times of the requests aren’t required to be integral and the available
bandwidth (W ) can be spread arbitrarily among the broadcast messages at every time-step. We will
show that this problem is also NP-hard. We consider the case where clients can’t buffer the last part of
a message, i.e. if a request arrives in the middle of the broadcast of the wanted message it has to wait
until the next complete broadcast has finished.

An algorithm for the broadcast scheduling problem is called an s-speed ρ-approximation algorithm
if it runs in polynomial time and always computes an s-feasible schedule whose average response time
(ART) is at most ρ times the ART of an optimal 1-feasible schedule.

Single source unsplittable min-cost flow problem A directed graph (V,E) is given with edge capacities
ue > 0 and costs ce ≥ 0, e ∈ E. One vertex s ∈ V is the designated source vertex. For a set of k
commodities we are given destinations ti ∈ V \ {s} and demands di > 0, i ∈ {1 . . . k}. Furthermore the
problem instance contains a budget B ≥ 0. The goal is to route each demand di from s to its destination ti
unsplittably without violating the edge capacities and without exceeding the budget B. Formally if each
di is routed along a s− ti path Pi with cost c(Pi) = di ·

∑
e∈Pi

ce the following must hold:
∑

i:e∈Pi
di ≤ ue

for all e ∈ E and
∑k

i=1 c(Pi) ≤ B.
In this paper we are only concerned with so called bicriteria (a, b)-approximation algorithms with

respect to minimum congestion and cost, i.e., algorithms computing a flow that violates the edge capacities
only by a factor a more than the optimal solution and is at most b times more expensive than the budget.

Often the case where the maximum demand is less than or equal to the minimum edge capacity
(dmax ≤ umin) is considered, resulting in better approximation ratios.

Related work The problem of minimizing the ART for broadcast scheduling with unit length mes-
sages is considered by Kalyanasundaram et al. [6]. An algorithm with ratio W/(W − 2), using W ≥ 3
channels and comparing the solution to the optimum 1-feasible schedule, is presented. This e.g. leads
to an approximation ratio of 3 for 3 channels or 1.5 for 6 channels. Determining whether the broadcast
scheduling problem is NP-hard is stated as an open question. The paper contains some results about the
online version of the problem, one of them being that every online algorithm using only one channel has
a competitive ratio of Ω(n). This additionally motivates the relaxation of allowing an online / approxi-
mation algorithm to use several channels and comparing the resulting ART with the ART of the optimal
1-feasible schedule. Relaxations of this kind are called resource augmentation [5, 9].

In [3] a version of broadcast scheduling with different message sizes and preemption is treated. For
the goal of minimizing the maximum response time a PTAS is given.

[7], [10] and [8] are concerned with stochastic broadcast scheduling problems in which not the exact
Ri(t) are known in advance but the probabilities pi of a user requesting Mi at any time-step. Costs ci

for broadcasting a message Mi are introduced. The goal is to find an infinite (periodic) schedule which
minimizes the sum of the expected response time and the broadcast costs. This is motivated e.g. by the
TV tele-text system. In [8] the authors look into the case where all messages have unit length and present
a PTAS if the number W of channels and the costs ci are bounded by constants. They state that it is
unknown whether the problem is NP-hard, although a somewhat generalized version is proven to be so
in [2].

Empirical results and background information about broadcast scheduling can be found in [1].

Recently, Skutella [11] presented upper and lower bounds for the approximation of the single source
unsplittable min-cost flow problem. Among other results he gave algorithms that achieve ratio (3, 1) for
the dmax ≤ umin case and ratio (3+2

√
2, 1) for arbitrary demands. Furthermore he proved a lower bound

of (1 +
√

5)/2 ≈ 1.618 for the case of arbitrary demands and without costs.3 Dinitz, Garg and Goemans
[4] prove that a ratio of 2 can be achieved if dmax ≤ umin and no costs are present.

3The conference version of [11] claims a lower bound of 2 − ε, but this is clarified in the journal version.
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NP-Hardness of Broadcast Scheduling 3

Contribution of this paper The first main contribution of this paper is an NP-hardness proof for the
broadcast scheduling problem with unit length messages, which answers the open question of [6]. The
proof is based on a reduction from Max Independent Set using different gadgets to simulate the nodes and
the edge constraints. As a consequence of the NP-hardness, the decision version of broadcast scheduling
is NP-complete because the problem is clearly in NP.

We show that this result can be carried over to the problem B|ri, pmtn|∑Fi, by proving that pre-
emption doesn’t help in the unit length case.

Using the NP-hardness result, we prove a new inapproximability result of (2 − ε, 1), for any ε > 0,
for the flow problem stated above. In the case of arbitrary demands this improves on the lower bound of
1.618 due to Skutella [11], although for the latter no edge costs need to be present. In the dmax ≤ umin

case, on the other hand, this is to our knowledge the first inapproximability result of this sort. There is
a gap to the so far best known approximation ratio of (3, 1). Skutella in [11] cites Goemans conjecturing
that a ratio of (2, 1) can be obtained by generalizing results from [4]. In that case our lower bound would
be tight.

Finally, we propose a 6-speed 1-approximation algorithm for broadcast scheduling, i.e., an algorithm
achieving ratio 1 using 6 channels compared to the optimal solution using one channel. This improves on
the previously known ratio of 1.5 for 6 channels [6].

2 NP-Hardness of Broadcast Scheduling

Reducing Max Independent Set First we explain the general idea of the reduction from Max Independent
Set to single-channel broadcast scheduling. Then we will describe more precisely the gadgets used and
prove their correctness. Finally, we put it all together and give concrete values for the parameters in order
to obtain a polynomial reduction. We also show how to generalize the result to the multiple channel case.

The general idea Let (V,E) be the graph for which a maximum independent set is to be found. Each
node v ∈ V will be represented by deg(v) + 1 pairs of messages, where deg(v) is the degree of node v. In
each pair, one message stands for “v is in the set” (the on message) and the other for “v is not in the
set” (the off message). The goal of the first part of the requests is to “force” a schedule to either have
X requests waiting for each on message and none for the off messages of node v, or vice versa. In the
second part of the requests the edge constraints will be modeled. For each edge {u, v}, so far unused
on/off messages of u and v are utilized. Finally, in the last part of the requests, nodes being on are
rewarded using the remaining |V | on/off message pairs.

From the description below it will become clear how the schedule S0 corresponding to an empty
independent set in (V,E) would look like. Let ART0 be the ART of the schedule S0. We call any
schedule whose ART is at most ART0 a reasonable schedule. When we say that a schedule is “forced” to
do something we mean that any other way of scheduling would result in an unreasonable schedule (with
an ART greater than ART0).

In the following we will need several different request-amounts. The smallest number of clients re-
questing one message at a time-step will be denoted by X. Let G be a much larger amount of requests,
such that G1 := G/(a − 1), G2 := G/a and G3 := G/(a − 2) are integers, with 2 < a < T . In particular,
Gi > X · (T +n) should hold. This ensures that at any time-step it is always better to schedule a message
with Gi requests waiting than one with X requests, no matter what happens in future time-steps. The
largest possible Ri(t) will be L, L > r ·G · (T + n), where r is the total number of requests excluding the
requests with Ri(t) = L. L requests for a dummy message at time t can be used to force the scheduling
of the dummy message at time t + 1 in any reasonable schedule, since delaying the dummy message by
one time-step is more expensive than all requests for non-dummy messages in total. Thus, we can block
big parts of the schedule for the other messages by having L requests for the dummy message in each
time-step. In the following pictures of request patterns this dummy message won’t be shown explicitly,
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4 NP-Hardness of Broadcast Scheduling

but it will be requested L times at each time-step during which no other message is requested. As a con-
sequence only in the time-steps directly following ones with requests for other messages, a non-dummy
message can be broadcast.

Duplicating the status of a node In this section we will only regard the first part of the requests (the
duplication part) and also only take into account its contribution to the ART until its end. By right choice
of G we will later show that a suboptimal schedule for the duplication part cannot lead to a reasonable
total schedule, no matter what is done in the other parts.

In this part each node v is treated separately in order to achieve the described setting of X waiting
requests for each of deg(v)+1 (on or off ) messages. Let vi, i ∈ {1 . . . 2 ·deg(v)+2}, be the corresponding
messages, even i standing for off messages and odd i for on messages. We now look at an interval con-
cerning one of these nodes. During the whole interval at each time-step where a non-dummy transmission
is possible at least two vi messages will have ≥ G/a requests waiting. All other messages each have at
most X requests waiting (in any reasonable schedule). Therefore it will always be better to schedule one
of the vi messages. The contribution of the waiting X requests and the requests for the dummy message
to the ART is the same for all reasonable schedules and will be ignored in the following.

The interval4 starts with Rv1(0) = G1 and Rv2(0) = G2. If v1 is scheduled at time 1 this corresponds
to the node being in the set (“on”), otherwise it is not (“off”). For now let us assume v1 is scheduled.
Next in the interval a simple gadget of requests will follow, so that at the end again G2 requests will be
waiting for message v2, X requests for v4 and none for v1 and v3. This gadget so to speak duplicates the
status of v1, v2 to v3, v4. This is repeated for the pairs of messages v5, v6; v7, v8 and so on. As a last
step in the interval the waiting G2 requests for message v2 will be “transformed” into X waiting requests
for v2.

We will now take a closer look at the duplicator gadget. Figure 1 shows it and two possible schedules
which minimize its contribution to the ART. In the following we will prove that any other schedule is
suboptimal and cannot lead to a reasonable schedule in total.

G1

G2

G2

G1

G3

G1

G2 G1

G2

G1

v

v

v

v

1

2

3

4

X

next gadget

A CB D

a a

a-1

X

G1

G2

G2

G1

G3

G1

G2 G1

G2

G1

v

v

v

v

1

2

3

4

X

next gadget

A CB D

a a

a-1

X

Figure 1: Two schedules which minimize the ART for the duplicator gadget. The dots mark which
message is broadcast. The left situation corresponds to v being in the independent set, the right one to
v not being in.

Observation 1 Lower bound: In every schedule, from time-step A + 1 until B and from C + 2 until D
at least G/a requests are waiting, and from B + 2 until C at least 2 · G/a requests.

Both schedules in Figure 1 come close: From A+1 until B and from C+2 until D at most G/(a−2)+X
clients are waiting. During the period [B + 2, C] at most 2 · G/(a − 2).

Let a be sufficiently large (e.g. 100). Consider a schedule that has additional G/a or more requests
waiting in any of the periods, compared to the lower bound. Clearly it will perform worse (cost at least
G/a more) than either of the schedules in Figure 1.

4w.l.o.g. the interval begins at t = 0.
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NP-Hardness of Broadcast Scheduling 5

We use this observation to restrict the number of cases which have to be taken into account at the time-
steps B +1 and B +2. Let vivj denote that S(B +1) = vi and S(B +2) = vj. The proofs of the following
three lemmas are deferred to the Appendix.

Lemma 2 All cases other than v4v2, v1v3, v1v4 and v4v1 lead to unreasonable schedules.

Lemma 3 Considering only the contribution of Rv1(B), Rv2(B +1), Rv3(B +1) and Rv4(B) until D the
cases v1v4 and v4v1 cost at least G/a more than v4v2 and v1v3.

Lemma 4 In every reasonable schedule the joint contribution of Rv1(0) until time-step B +1 and Rv2(0)
until time-step B + 2 is the same.

Lemma 5 The contribution of a single duplicator gadget to the ART in the duplication part is minimized
by either of the two schedules in Figure 1. Every other schedule costs at least G/a more.

Proof: Considering only the contribution until time-step C + 2 and ignoring the requests Rv1(C + 1)
and Rv2(C + 1) (these can be accounted to the next gadget), this follows directly from Lemmas 2, 3 and
4. To the right of C + 2 in every schedule there will be at least one message with X waiting requests.
These messages can’t be scheduled until after the duplication part is over. So it doesn’t matter which of
the two messages is waiting. ut

Now all that is missing is the special case after the last duplicator gadget, which ends with G1 requests
for v1 and v2 (instead of G2 for the latter): the “transformation” of G1 requests waiting for v1 (resp. v2)
into X requests waiting for v1 (resp. v2). It is easy to see that the requests depicted in Figure 2 achieve
that.

G1

G1

G1

G1

v

v

1

2

a

X

X

a

G1

G1

G1

G1

v

v

1

2

a

X

X

a

Figure 2: Two possible optimal schedules of the transformation gadget.

Enforcing the edge constraints In this section we present an edge gadget that will model the edge
constraints. We only take into account its contribution to the ART in the second part of the requests
(the edges part). We assume that for each node either all its on messages or all its off messages have
X requests waiting. As in the previous section the gadgets can be treated separately. At each time-step
where a message can be scheduled at least one big amount of requests (≥ G) concerning the current edge
will be waiting and only small amounts for other messages (≤ X).

For each edge {u, v} previously unused message pairs ui, ui+1 and vj, vj+1 are combined in an edge
gadget. Figure 3 shows this gadget in three possible situations and resulting optimal schedules. After the
requests for the off messages three time-steps are given to answer all waiting G requests. The forth case,
with u not being in the set and v being in, is symmetrical to the second picture.

Lemma 6 The contribution of a single edge gadget to the ART in the edges part of the schedule is
minimized by one of the three schedules in Figure 3, depending on which messages have waiting requests.
The first case (both nodes are in the set) costs X · b more than the other two.

Proof: The contribution of the G requests can be completely ignored because it is the same in any
(optimal) schedule. It is clear that the shown schedules minimize the ART in the corresponding situation.
There are other symmetrical schedules which lead to the same ART. A simple calculation gives that the
costs of the second and third case are the same and that the first case is X · b more expensive. ut
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Figure 3: The edge gadget in three possible situations with the corresponding optimal schedule.

Maximizing the nodes in the set The last on/off message pair of each node is used to reward nodes in
the independent set. This is done again in a separate interval for each node. The interval begins with G
requests for the off message, then it has c empty steps (filled with dummy requests), and it ends with
G requests for the on message. There is only one reasonable schedule: in the beginning immediately
schedule the off message and at the end the on message. The proof of the following lemma is obvious.

Lemma 7 If a node is in the set, its reward gadget contributes X · (c+1) less than if it is not in the set.

Combining the gadgets and setting the parameter values We now look at the combination of the three
previously described parts. Consider some schedule S which is suboptimal in the duplication part. By
Lemma 5 it contributes at least G/a more to the ART than a schedule which is optimal in this part. The
only way S can gain is by possibly earlier scheduled messages with X requests waiting. G is chosen such
that G/a is greater than 2 ·X · (T + n) · (2 · |E| + |V |). So even if all requests of the form Ri(t) = X can
be satisfied immediately in S, its ART will still be larger than that of a schedule which is optimal in the
duplication part.

This choice of G also suffices to ensure that the cases described in the edge part and the reward part
of the requests are the only ones appearing in reasonable solutions.

Now it remains to choose b such that no edge constraints are violated. The only possibility to gain
something by breaking these constraints is via the reward gadgets. If b is greater than (c + 1) · |V |,
violating one edge constraint costs more than what can be gained by scheduling all reward gadgets the
optimal way. So it is clear that appropriate values a, b, c, G and L can be found.

All reasonable schedules correspond to independent sets of (V,E), and the cost of a reasonable schedule
decreases as the cardinality of the corresponding independent set gets larger. Thus, a polynomial algo-
rithm for solving the constructed instance of broadcast scheduling optimally would imply a polynomial
algorithm for Max Independent Set, an NP-hard problem.

Theorem 8 Single-channel broadcast scheduling with unit length messages and given requests is strongly
NP-hard.

Remark: strongly NP-hard follows from the fact that all encoded numbers are polynomial in the original
input size.

Consider the case with several, say, W , response channels. Simply adding W −1 new dummy messages
and requesting each of them L times in every time-step ensures that W−1 of the W channels are effectively
blocked in any reasonable schedule, thus leading to the following theorem.

Theorem 9 Multiple-channel broadcast scheduling with unit length messages and given requests is strong-
ly NP-hard for any number W of channels.

NP-hardness when preemption is allowed

Theorem 10 Single-channel broadcast scheduling with unit length messages, preemption and given re-
quests is NP-hard.
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Inapproximability of Single-Source Unsplittable Min-Cost Flow 7

Proof: We transform an optimal, preemptive solution for an instance with unit length messages, requests
arriving at integral time-steps and W = 1 into an optimal, non-preemtive one. We consider one time-step
after the other starting at t = 1. Let S be the modified schedule up to time-step t. Assume that at
each time-step to the left of t either excatly one or no message is broadcast in S (this is clear for t = 1).
Because of this in S no broadcast during time-step t has started earlier than t. Of all messages scheduled
in this time-step we choose the one which finishes earliest, say M . From S we construct S′ by scheduling
M at t and distributing all other broadcasts arbitrarily to the positions > t where M was scheduled in
S. By this transformation no broadcast finishes later, only M might finish earlier. Therefore the value
of the objective function doesn’t increase. Thus by repeating this step we’ve proved the claim. ut

3 Inapproximability of Single-Source Unsplittable Min-Cost Flow

In this section we show that broadcast scheduling could be solved optimally in polynomial time with a
(2− ε, 1) approximation for single-source unsplittable min-cost flow, i.e., with an algorithm computing a
single-source unsplittable flow that does not exceed a given budget B and routes at most (2− ε)ue units
of flow through each edge e (provided that a single-source unsplittable flow exists that has cost at most
B and does not violate any edge capacities).

Theorem 11 For arbitrary ε > 0 there is no (2 − ε, 1) approximation for the single source unsplittable
min-cost flow problem, unless P=NP.

Our reduction is inspired by the integral flow model with additional constraints given by Kalyana-
sundaram, Pruhs and Velauthapillai in [6] to solve single channel broadcast scheduling. By relaxing the
flow problem they obtained an approximation algorithm with the ratio mentioned in Section 1. In the
following, we briefly recall the flow model of [6].

The flow model The network for the integral flow problem is constructed in the following way. For
each message Mi, i ∈ {1 . . . n}, a row of nodes vi(t), t ∈ {0 . . . T + n} is added. A flow of 1 passing
through node vi(t) will correspond to Mi being broadcast at t. The extra n nodes to the right are needed
to guarantee that every Ri(t) can be answered.

All edges in the network have capacity 1. Between vi(t) and vi(t′), 0 ≤ t < t′ ≤ T + n an edge ei(t, t′)
is added. A flow of 1 passing through this edge corresponds to Mi being broadcast at t and t′, and not
in between. The weight of the edge is the cumulated ART of the requests Ri(t) . . . Ri(t′ − 1), if they are
answered at t′: wi(t, t′) :=

∑t′−1
j=t (t′ − j)Ri(j).

The source node s is connected to the vi(0) nodes. The nodes vi(t), t ∈ {T +1 . . . T +n} are connected
to the destination node d. All these edges have cost 0. A demand of n is requested to be routed integrally
splittable from s to d. For each row i of the network a flow of 1 can take one specific path, determining
by the touched nodes when Mi is broadcast.

So far this would be solvable in polynomial time. The hardness comes in when the additional con-
straints are posed that at each t only one vi(t), i ∈ {1 . . . n} is touched by a flow of 1. This is necessary
to ensure a solution with only one channel.

Enforcing the additional constraints In [6], the flow problem is written as a linear program and additional
linear inequalities are added to ensure that at most 1 unit of flow can pass through all the vertices of
vi(t) of each column t. Contrary to this approach, we now transform the flow model into a single source
unsplittable flow problem and add nodes, edges and demands to enforce the constraint that only one
vertex of each column can carry nonzero flow. All additional edges again have capacity 1. First of all, the
(splittable) demand of n units at node d is replaced by n separate demands of 1 unit at node d. We now
will explain how to ensure that each column t of the network (nodes vi(t), i ∈ {1 . . . n}) is only touched
by a flow path of one of these demands.
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8 Approximation of Broadcast Scheduling

Every node vi(t) is replaced by two nodes ui(t) and wi(t), where ui(t) receives all in-edges and wi(t)
all out-edges of vi(t). An edge with cost 0 from ui(t) to wi(t) is added. A zero cost edge is added from a
new node x(t) to each ui(t) and similarly from each wi(t) to a new node y(t).

Let ε′ > 0 be a small constant and L be a large number depending on ε′ and the problem input (see
below).

n− 1 edges with cost L are added from s to x(t). To avoid obtaining a multi-graph these can be split
into two edges, adding new nodes (as is done in Figure 4). At y(t) n − 1 demands for 1 − ε′ units are
added. Figure 4 shows a simplified example with three rows.

1u  (t) 1w  (t)

ε
ε1-   ’

1-   ’

ds

1

1

1

demands:

x(t)

demands:

y(t)

L

L

Figure 4: Construction enforcing that at most one flow path touches a column

If these n− 1 demands are satisfied via a path that contains x(t), all rows except one will be blocked
as wanted. This might be prevented in two cases:

1. A demand at y(t) is routed via x(t′), t′ < t. This will still block a row in column t (and additionally
in some previous columns).

2. One of the demands at d is routed via x(t). Then a demand at y(t′) for some t′ ≤ t must be routed
via a row of the network, not touching any x(t′′), t′′ ≤ t. Let C be an (easily obtained) upper bound
for the cost of a broadcast schedule. If L > C/ε′, this case can’t lead to an optimal cost because
the demands at d are greater than the ones for y(t) by ε′.

If there was a (2 − ε, 1) approximation algorithm, with ε > 2ε′, in all resulting flows no edge would
be used by more than one flow path. The cost of a flow lies between X := (T + n) · (n − 1) · L · (1 − ε′)
(cost resulting from the demands at the y(t) nodes) and X + C. It is clear that the optimal cost will
take a value of X + δ, where δ is integer. Therefore an optimal solution for the enhanced integral flow
problem could be obtained by a simple binary search over the budget B presented to the approximation
algorithm.

4 Approximation of Broadcast Scheduling

In this section, we show that there is a 6-speed 1-approximation algorithm, i.e., an algorithm that com-
putes a 6-feasible schedule whose ART is at most the ART of the optimal 1-feasible schedule. Previously,
no algorithm for computing an O(1)-feasible schedule with this property was known.

Kalyanasundaram et al. presented a W -speed W/(W − 2)-approximation algorithm for broadcast
scheduling, for any W ≥ 3. We will obtain our result by using their algorithm with W = 4 and extending
it by two “random channels”. From their fractional relaxation of the broadcast scheduling problem (see
Section 3) they obtain values pi(t), for 1 ≤ i ≤ n and 1 ≤ t ≤ T + n, that can be interpreted as the
fraction of message i that is broadcast at time t. (The value pi(t) is simply the flow through vi(t) in the
fractional relaxation.) These values pi(t) satisfy the conditions

• ∑n
i=1 pi(t) ≤ 1 (the total amount of messages broadcast at time t does not exceed 1) and
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• if Ri(t) > 0, then there exists t′ > t such that
∑t′

j=t+1 pi(t) ≥ 1.

The ART of the fractional schedule given by the values pi(t) is denoted by LOPT. LOPT is a lower bound
on the ART of the optimal integral 1-feasible schedule.

The algorithm by Kalyanasundaram et al. is parameterized by a positive value ε < 1
2 such that W = 1

ε

is an integer. Let bi(j) be the j-th breakpoint of message i, i.e., the smallest t such that
∑t

k=1 pi(k) ≥ jε.
Their method of converting the fractional schedule into an integral 1

ε -feasible schedule has the following
property:

• In any interval [bi(j), bi(j + 1)] between consecutive breakpoints of the same message, message i is
broadcast at least once in the resulting schedule.

Now we are ready to describe our 6-speed 1-approximation algorithm:

Algorithm A
(1) compute the values pi(t) of the optimal fractional schedule;
(2) on four channels, use the schedule computed by the algo-

rithm from [6] for ε = 1
4 ;

(3) on two channels, select the message to be scheduled at time
t randomly with probability pi(t) for message i.

Let A denote the expected ART of the schedule produced by Algorithm A. We want to show that
A ≤ LOPT.

The ART of the optimal fractional schedule is the sum of the contributions of all requests Ri(t). Fix
some Ri(t) > 0. Let t1, t2, . . . , t` be the earliest time-steps after time t in which pi(tj) > 0, 1 ≤ j ≤ `,
such that

∑`−1
j=1 pi(tj) ≤ 1

2 and
∑`

j=1 pi(tj) > 1
2 . The contribution of Ri(t) to LOPT is at least

x := Ri(t) ·

`−1∑

j=1

pi(tj)(tj − t) + (1 −
`−1∑
j=1

pi(tj)) · (t` − t)


 . (1)

Now we consider the expected contribution of Ri(t) to the schedule produced by Algorithm A. On four
channels the algorithm uses the schedule produced by the algorithm from [6] for ε = 1

4 . As remarked
above, this ensures that any message i is broadcast in every interval between two consecutive breakpoints
of that message. Since

∑`
j=1 pi(tj) > 1

2 , the interval [t + 1, t`] must contain two consecutive breakpoints.
Therefore, it is ensured that message i is broadcast at least once in this interval, so that the requests
Ri(t) are satisfied no later than at time t`.

Furthermore, with qj := (1 − pi(tj))2 the probability that Ri(t) is satisfied by one of the two random
channels at time t1 is 1− q1. The probability that Ri(t) is not satisfied by the random channels at times
t1, t2, . . . , tj−1, but is satisfied at time tj for some j < ` is(

j−1∏
m=1

qm

)
· (1 − qj)

The probability that Ri(t) is not satisfied before time t` on one of the random channels is
∏`−1

m=1 qm.
Therefore, the expected contribution of Ri(t) to A is at most:

y := Ri(t) ·
(

(1 − q1) · (t1 − t) + · · · +
(

`−2∏
m=1

qm

)
· (1 − q`−1) · (t`−1 − t) +

(
`−1∏
m=1

qm

)
· (t` − t)

)
(2)

Now we claim that y ≤ x always holds. The proof of Lemma 12 is deferred to the appendix.
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Lemma 12 Let x and y be as defined by (1) and (2), where t < t1 < t2 < · · · < t` is an increasing
sequence of arbitrary real numbers, Ri(t) is any positive number, and the pi(tj) are positive real numbers
satisfying

∑`−1
j=1 pi(tj) ≤ 1

2 . Then y ≤ x.

By Lemma 12, the expected contribution of Ri(t) to the ART achieved by Algorithm A is at most
the contribution of Ri(t) to the ART of the optimal fractional schedule. By linearity of expectation, we
obtain that A ≤ LOPT.

Furthermore, Algorithm A can easily be derandomized by the method of conditional probabilities.
In each time-step, there are at most n2 possible choices for the messages broadcast on the two random
channels. For each of these choices, the expected ART of the schedule can be computed in polynomial time,
and it suffices to select the choice that minimizes the expected ART. Therefore, we obtain a deterministic
algorithm with the same performance guarantee.

Theorem 13 There is a 6-speed 1-approximation algorithm for the broadcast scheduling problem.

5 Conclusion

We have resolved the complexity of the broadcast scheduling problem by proving its NP-hardness. From
this we have derived a new (2 − ε, 1) inapproximability result for the single-source unsplittable min-cost
flow problem. For broadcast scheduling, we also showed that an offline algorithm with 6 channels can
achieve an average response time that is at least as good as the optimal solution with 1 channel. Regarding
future work, it would be interesting to determine the approximability of broadcast scheduling without
resource augmentation. The reduction we used in our NP-hardness proof does not provide any indication
that a good 1-speed approximation algorithm cannot exist.
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6 Appendix

Proof of Lemma 2:

• S(B + 1) = v1 or S(B + 1) = v4, otherwise ≥ 3G/a instead ≤ 2G/(a − 2) requests are waiting
during [B + 2, C].

• Analogously: If S(1) = v1 then S(B + 2) = v2; if S(1) = v2 then S(B + 1) = v1 or S(B + 2) = v1.

• The last case to be excluded, the case v1v2, is also out of question because this would lead to ≥ 2G/a
requests waiting in [C + 2,D] instead of ≤ G/(a − 2).

ut
Proof of Lemma 3: In any of the cases S(C+1) can (and has) to be chosen such that neither Rv3(B+1)
nor Rv4(B) have to wait after C + 1. Similarly also Rv1(B) and Rv2(B + 1) don’t have to wait longer
than C + 2. This leads to the following joint contributions:

• v4v2: (a + 1)G2 + G1 + (a − 1)G3 + G1 = G ·
(
2 + 1

a−2 + 2
a−1 + 1

a

)
• v1v3: G2 + aG1 + G3 + aG1 = G ·

(
2 + 1

a−2 + 2
a−1 + 1

a

)
• v1v4: G2 + aG1 + (a − 1)G3 + 2G1 = G ·

(
2 + 1

a−2 + 3
a−1 + 1

a

)
• v4v1: 2G2 + aG1 + (a − 1)G3 + G1 = G ·

(
2 + 1

a−2 + 2
a−1 + 2

a

)
ut

Proof of Lemma 4: There are two cases to be considered:

• S(1) = v1: The joint contributions is G1 + (a + 1)G2 = G ·
(

1
a−1 + 1

a + 1
)

• S(1) = v2: The joint contributions is G2 + aG1 = G ·
(

1
a−1 + 1

a + 1
)

ut
Proof of Lemma 12: The lemma can be proved by induction on `. For ` = 1, we have x = Ri(t)·(t1−t) =
y.

For the induction step, let ` ≥ 2 and assume that the claim holds for `− 1. We rewrite y as a sum of
` − 1 terms instead of ` terms by combining the last two terms:

y = Ri(t)·
(

(1 − q1) · (t1 − t) + q1(1 − q2) · (t2 − t) + · · ·

+ (
`−2∏
m=1

qm) · ((1 − q`−1) · (t`−1 − t) + q`−1 · (t` − t))︸ ︷︷ ︸
t′`−1−t

)

By the induction hypothesis, we get

y ≤ Ri(t) ·

`−2∑

j=1

pi(tj)(tj − t) + (1 −
`−2∑
j=1

pi(tj)) · (t′`−1 − t)



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Then we get

x − y

Ri(t)
≥ pi(t`−1)(t`−1 − t) + (1 −

`−1∑
j=1

pi(tj)) · (t` − t) − (1 −
`−2∑
j=1

pi(tj)) · (t′`−1 − t)

= (t` − t`−1)pi(t`−1)


(2 − pi(t`−1))(1 −

`−2∑
j=1

pi(tj)) − 1




This value is positive, because t` − t`−1 > 0, pi(t`−1) > 0 and (2 − pi(t`−1))(1 −∑`−2
j=1 pi(tj)) > 1. To see

the latter, note that
∑`−1

j=1 pi(tj) ≤ 1
2 implies

∑`−2
j=1 pi(tj) ≤ 1

2 − pi(t`−1) and, therefore, (2− pi(t`−1))(1−∑`−2
j=1 pi(tj)) ≥ (2 − pi(t`−1))(1

2 + pi(t`−1)) = 1 + pi(t`−1)(3
2 − pi(t`−1)) > 1. ut
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