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Abstract

We present a general theoretical description that allows to desc?ae the influence of isotropic
chemical shift in homonuclear and heteronuclear dipolar recoupli Ments in magic-angle-
spinning solid-state NMR. Through a transformation of the Hamilt&K\to an interaction frame with
the combined radio-frequency irradiation and the isotropic ¢ m‘la.l_hi}.lj , we determine an effective
Hamiltonian to first order with respect to the relevant inte 2‘1? nusle spin interactions. This unravels
the essential resonance conditions for efficient dipolar ?ecoupl g. Furthermore, we propose how to
handle situations where the resonance conditigns are ndt-exactly fulfilled. To verify the general
theoretical description, we compare num ric\iﬂ.%(wa

—

Hamiltonian with simulations using tHe. calctlated effective Hamiltonian for propagation. The

I

comparisons are exemplified for the h uclear dipolar recoupling experiments C7), and POST-C7,.
£
e, o
KEYWORDS: Soli s[btq spectroscopy, Dipolar recoupling experiments, Floquet theory.
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tions using a time-sliced time-dependent
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Iﬁl!shin g Dipolar recoupling among spin-1/2 nuclei is routinely used in biological magic-angle-spinning
(MAS) NMR to gain valuable insight into the atomic structure of complex systems [1-6]. To ensure
efficient transfer of polarization between spins and accurate measurement of internuclear distances
using dipolar couplings, a lot of effort has been devoted to develop fficient dipolar recoupling
experiments for a variety of different nuclear spin systems and experimental conditions. This has led to
numerous different dipolar recoupling sequences for either homo- dx heteétonuclear polarization transfer
[7-9].

Most of the existing dipolar recoupling experiments have“been developed using average
Hamiltonian theory [10-13] (AHT) which has proven to be a powerful tool to analyze the action of
challenging multi-pulse experiments in simple germss An~example of quite advanced experiments
developed by such means are the symmetry-basedpulse-sequences [14-18]. Here, symmetry arguments
have been used to develop selection rule§ to construct elegant pulse sequences with robust behaviors
with respect to challenges such as rf'inhomogeneity and large variations in isotropic chemical shifts
while ensuring high polarization-transferefficiency.

In particular, the inflience.of isotropic chemical shifts has been carefully analyzed since the
perturbations from chemical-shiftwffsets in practical applications often exceeds the magnitude of the
recoupled effective dipelar-coupling Hamiltonian. Thus, a basic need for dipolar recoupling pulse
sequences is the ability to suppress the isotropic chemical shift for certain spectral regions. This can be
highly challenging to fulfill for nuclear spin pairs with small dipolar couplings and large chemical-shift
dispersions considering the practical limitations for the rf-field strengths. An example of improved
compensatiof) of isotropic chemical shift is the development of the so-called POST [15] element for the
C-symmetry sequences. Based on higher-order average Hamiltonian calculations [12, 15], the POST
element was proven to be better than a simple 2n,2m element in terms of offset compensation [15].

Alternatively, one may consider the isotropic chemical shift and the rf field together. Such an

approach was applied for the description of the Rotational Resonance Tickling (R*T) dipolar recoupling
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.al dres‘ ed for the so-called four-pulse recoupling (FPR) scheme [21]. The same method has also been
used for homonuclear decoupling experiments with the Lee-Goldburg (LG) scheme [22] and the
phase/frequency modulated (PMLG/FSLG) variants [23, 24]. In general, there are two main advantages
of considering the isotropic chemical shift and the rf field toge‘?ar in the interaction-frame
transformation: (i) The convergence of the series expansion is faster inseNhemical-shift offset is

often the biggest term in the spin-system Hamiltonian. This nﬂiﬂe theoretical description to
ilton1

determine the effective Hamiltonian simpler. (ii) The effectiv will not contain any terms

2)
[

involving isotropic chemical shifts which will reduce the n:l‘r‘nb% terms to calculate for the total
effective Hamiltonian to a given order. However, suQn qp)pr ch has been used for relatively few
experiments as this method will often break the rgquirément-that the Hamiltonian has to be cyclic over
the entire period of the pulse element — in p%

handle such problems, another approa hélee Floquet theory [25-27], where the effective

Hamiltonian can be found even when &K Itonian involves several time dependencies which are not

commensurate. \

hen varying the isotropic chemical shift. To

Knowledge concern effectlve time-independent Hamiltonian under any rf sequence
provides certain advantages co ed to performing numerical simulations based on time slicing of the
time-dependent Har{ n. s1des the analytical insight which can be helpful to develop improved

pulse schemes, t Qective Hamiltonian found by analytical means can be determined independently

for larger multiss

2y n s/ys ems by calculating and collecting the various terms separately. Combining such
an approwsparse matrix algorithms, as has been done for liquid-state NMR [28], may be useful
to petform ajsprommate simulations for larger spin systems in solids than is possible by direct numerical
pr wt&n procedures of the time-dependent Hamiltonian.

In this paper, we present a general concept to describe the influence of isotropic chemical shift
under general amplitude and phase-modulated dipolar recoupling experiments. By transforming the

Hamiltonian into an interaction frame using the effective field in a tilted frame, we present a general
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ator-based Tilaquetustigmensarkepied setcumincpiihe Gidiective dipalareaauniingoldamiltonian. This

ﬁl!& nITrllu ation circumvents the requirement that the Hamiltonian has to be cyclic over the entire period of
the pulse element. Additionally, it is proposed how to implement near-resonance conditions for finding
the approximate effective Hamiltonian.
To describe the various elements of this new and general appro? to pulse sequence analysis
and design, we have split the theory section into four sub-sections t dgkbe\the proposed stepwise

procedure. A repeating pulse element consisting of four pulses is uSed as«an introductory example with

the note that the pulse sequence itself does not have any appli

ti(‘)a. We then, as the second and more
~—

—
useful example, employ the theoretical framework to show, how isgt pic chemical shift influences the

symmetry-based pulse sequences C75 [14] and POST-@ [15].

\ .
Theory \
\
For the theoretical description, w %ider two homonuclear coupled spin-1/2 nuclei, fl

~
and | ,, in the rotating frame (the @r ction frame). The time-dependent Hamiltonian includes
ho

nuclear dipole-dipole coupling under MAS and rf irradiation

the isotropic chemical shifts and the
and is given by Q
/ A ~ A A
/\ IO H, +H,(1)+H,, (1) (M
with 4 Ay () =Y o (t)] L cos(0(2))+1,, sin(0(7))] )

. £
U o
H, :za)lq P 3)

<
A 2 . ~ ~ A ~ ~ ~
\ H1112 (t) - z wl(gzemwrt (2112122 =11, _Ilylzy) > 4
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n n.ﬁe the angulThifiwquesditsvas ceantbdby Jathehe Motttk ichetniealtshifrsionsffretheldipolar coupling,
Publisidng, the spinning frequency. The rf irradiation at a given time is described by the instantaneous
amplitude @, () and phase 6(¢) in the transverse (x-y) plane. The anisotropic part of the chemical-shift

Hamiltonian is not included in the interaction-frame transformation and will be described by higher-

order terms in the effective Hamiltonian. The way to calculate these tené‘@cently been presented

elsewhere [29, 30]. We note that the presented description is also @ for a heteronuclear dipolar

coupling interaction with a truncation of the planar (terms containiftg thésgperators fx and fy) operator

—~
terms of the dipolar Hamiltonian in Eq. (4). QS

Our goal is to calculate an approximate first-order effjctive time-independent Hamiltonian for
-
arac

the time-dependent Hamiltonian of Eq. (1) to ize the time evolution of the nuclear spin
systems. The sections below explain systemdticallystep by step the theoretical process we propose. In
section A), we show how to determine t \sg\eit‘\e axis of rotation and the corresponding effective
frequency for the effective rf Hamilton \ﬁ{ ented by both Eq. (2) and Eq. (3). The effective axis of
rotation and corresponding effective%cy are employed to determine the time dependence of a
given single-spin operator i them)ed interaction frame of the effective rf-field Hamiltonian. This is
presented in the suppl tafy ?a rial. In section B), we show the time dependencies for the dipolar
coupling Hamilt(zji e effective rf interaction frame and present a general operator-based Floquet

handle sit e;Q

framework to determine the first-order effective Hamiltonian. In section C), we demonstrate how to
£
onsyvhefe the resonance conditions are not exactly met. Finally, in section D), we show

how t pro ateSwith the determined effective Hamiltonian.

.46 ’ffective frequencies and axis of rotation for the effective rf Hamiltonian
~

We transform Eq. (1) into an interaction frame containing both the rf Hamiltonian of Eq. (2) and
the chemical-shift Hamiltonian of Eq. (3) for each of the two spins separately. This results in a double-

rotating frame with, in general, different frequencies and different axes for the two spins. To do so, we
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tr ﬁns mation

Publis
Hrfeff .4 (t) = a)ilsqoiqz + a)l (t)|:qu COS(H(t)) +fqy Sln(g(t))] ? (5)

S0

where @ = 0, — 0, is the isotropic chemical-shift offset relative to the tf carrier frequency and o,

denotes the carrier frequency while g refers to the two different nuclei %Me the values 1 or 2.

As an example we consider a pulse element consisting of fourpulses which are repeated M times

1
as presented in Fig. 1A. The time of the repeating pulse elem é\ n.be defined by 7,, which for the
—

present pulse example is given by z, =4z,. This implies that H 59 ; (1)= g (7, +1) and the total

N
@

Taking into account the isotropic 1ft in the effective rf Hamiltonian will often break

mixing time for the experiment is M7, .

the periodicity of the pulse element (1& € ectlve rf Hamiltonian will cause an overall rotation over

the time 7, ) and, therefore, 1ntro$b\ utation around an effective axis. The orientation of the

effective axis of rotation fo }}Se sequence can be calculated in many ways, e.g., using quaternions
[31]. The effective a ? rfhe ; ective rf Hamiltonian in Eq. (5) using the element in Fig. 1A is

lustrated in the si

r}%l -Spin subspace by the red axis in Fig. 1B. The red dots represent the density

operator as ctio of M pulse sequence elements and using the initial operator /5(0)=f ;- 1he

effective @1 quency a)lf{ tells how fast the single-spin operators nutates around the effective

-

axis as a funstlon of Mz,

\E‘clulpped with the direction and magnitude of the effective axis of rotation, we define a new
tilted Single-spin subspace as shown in Fig. 1C. In this subspace, the red line corresponds to the

effective axis of rotation for the complete pulse sequence and we define this axis as the effective z-axis
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e "5 th operatoFif manustiphswas aseepied by kiGthanu BhysnCliek oat torsee Rarersigh of sesojddefined by taking
Pubhﬁqur}‘g operator and transform it into IAqu,,‘ with fqzqg = R(agﬁ, By yeﬁ)IA qZR(aeﬁ, By Vo )Jr where the

same transformation is also used to rotate / 4 10to I » and [ into [ ., (green lines in Fig. 1C).
X gx¥ qy !

Under conditions where the effective rf Hamiltonian leads to an overall C}?"C rotation, the effective axis

of rotation is undefined in the calculation. Under these conditions, no ffectiye coordinate system is

found and the conventional single-spin subspace shown in black in hgl\ used with IAM = qu where

D

Jj can take the values x, y, or zand j¥ can take the values x*- " Or Z

As the effective rf-field Hamiltonian in Eq. (5) t&;n on the isotropic chemical-shift offset, we

transform the dipolar-coupling Hamiltonian into thé e ti\:a rf-field interaction frame for each spin
L -
operator separately given by \\
~ ‘i\ —[j.l:l o ()t
7 — AT T 5 § — 2 o e
I,(n=U0 (t)fq,ﬁ% U (1)=Te , (6)

where j refers to the initial operat a.&\\(%nd takes the index z for a heteronuclear dipolar coupling

Hamiltonian and j is either x yfaxdz for*a homonuclear dipolar coupling Hamiltonian. T denotes the

Dyson time-ordering operator.

In order to vent tl/ express the time-dependencies of each single-spin operator in the

effective rf-fiel in@action frame of Eq. (6), we employ the effective axis of rotation and the

correspondi effécti}e ield frequency a)fjf as presented in the supplementary material.

ﬂ
‘-\(;\\N~‘__j)
lg@tyating the effective Hamiltonian

Sln\the effective rf field interaction frame, the overall Hamiltonian will only contain terms from

the dipolar coupling (originating from Eq. (4)) given by
~ 2

1,,,(0)= Y oflle™ (20, (0 L (0)-1, () 1. ()1, (), (1)) 1)

n=-2
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re cach off thiibviantisesistwiN acoprEators. Théhe R Cick i il sbdmeragiionofiiepagicah be written in

Pu bliSWL eitr%léc d frame of the effective field as

A A

qu (t) - c(t)q,xe”,j ]qX“ﬁ' * c(t)q,y”’,j qu“’" * C(t)q,z?”,j queff ’ (7a)

>

and the time-dependent coefficients are defined as discussed in the supplementary material. One can

always rewrite Eq. (7) in a compact form using Fourier series given by, \

~ 2

© © -

: = T (nk eyl ly) ineot ik

H, (1)=2, 2, 2 22 Hy e e
Lh

n==2 kj=—0 ky=—0 [

Dt il ¢
Gy W T ®)
R

where /, and /, can only take the value zero when the ﬁtiv icld Hamiltonian in Eq. (5) is causing
an overall cyclic rotation for the respective single-sp%vgemt.‘o)rs over period 7, . This restriction can be

understood by that the effective axis is not d fnm\gfm'@ situation. /, and [, can take the values 0 (for
\
terms containing the operator fq .+ alongtheseffective axis) and +1 (for terms containing the operator
1z~ \
1

qx

I » and fqye,f) when the effecti ,f\ amiltonian in Eq. (5) is not causing an overall cyclic

rotation for the respectively spin operators over period 7, . The frequencies @, relate to the total

time of the basic elem@hq) 27 /7, which in the homonuclear case will fulfill o, =w,,.

However, this is { Wa § the case in heteronuclear experiments where two different pulse
D, ~

elements can e/gﬁied on the two spins. The Fourier components FI}I",’Z]“ falik) are given by

A A

I:I(”’kl 4y,0,0) _ a)(”)

I L1, Z akl,jeﬁ,jakz’jejf,jllje[f[zjezf ) ©

) 1
Q P2

\ P (ke 0.41) () Z » . ~ 4 A
H, =y, ”ak],fff,jlueff a o ¥, L g+, tia, ., Izye‘,f , (10)
7o

J

P (ki ey #1,0) () z —. A +i A A
H’lfz =0, 2, akl,x“ﬁ,jﬂakl,yfff,j ]leff + akl,yeff,j—lakl,xeﬁ,j 1y7 akz,fff,jlszf , (1D
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Publishing

with j taking the indices x, y, or z for a homonuclear dipolar coupling interaction while j=z for a

heteronuclear dipolar coupling interaction due to truncation of planar terms. j¥ takes the indices x* ,

¥ or z¥ when the effective rf field Hamiltonian in Eq. (5) is caus"(gqverall cyclic rotation,

respectively, for the single-spin operators and j¥ =z? if not. This Ds that if both involved spins

experience an overall cyclic rotation, it is only Eq. (9) th sts. one of the involved spins

~
and either Eq. (10) or Eq. (11) are

experience an overall cyclic rotation and the other do not, thénEq.
active. Finally, if both spins do not experience an overglleyc o>ation then all Fourier components in

Egs. (9)-(12) exist. The complex Fourier coefficignts Lﬂ? o, are determined as presented in

effective frame.

supplementary material. We note that the F o@ms in Egs. (9-12) are represented in the tilted
\

\ S
From Eq. (8), it can be s en&N dipolar-coupling Hamiltonian in the effective rf-field

inw,t ik, @,

interaction frame contains terms with by _to five fundamental frequencies given by "', e, and

il 0t
¢ n Floquet theo ,@ber of fundamental frequencies can always be reduced if two
£

frequencies are compignsur. b{describing them using the greatest common divisor. In our case, the
leme

total time of the Qﬁ s are the same for homonuclear recoupling sequences with @, = ®,, and

such sequenées cdn 2% ys be described by collapsing the two Floquet dimensions into a single one.
ﬂ

Such a d scriptign ould require two-spin Fourier coefficients for the nine two-spin operators. For

ﬁ
conv: iencesand generality (heteronuclear recoupling), we only use the single-spin coefficients a, e

co }ohding to single-spin operator transformation and use them to calculate effective Hamiltonians.

In such a single-spin description, the calculation of the Fourier coefficients is simpler and more

10
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AI r;uipa ent byt thgsmberigiwae sstbpedesonanes wiyditias becomastin liendieetordhe many possible

mbi gr ations of the two frequencies in the resonance conditions.

Publis

The time-independent first-order dipolar Hamiltonian obtained from operator-based Floquet

theory is given by the set of quintuples of integers that satisfy the resonance conditions [27, 30, 32]
n,o, + ko, + ko, +1Lof + Lot =0 / \ (13)

The effective time-independent dipolar coupling Hamiltonian at t onance conditions can be

found by collecting the terms for which Eq. (13) is fulfilled Q“H

Q
[_}5 ) _ (m k17€"z Iy 12) (14)

gy, kl kyoly, 12

As the Fourier components H "kl ol )%4) contain products of operators of the form

e
IAMV according to the Egs. (9) - (12), the '\Q ipolar coupling Hamiltonian can be represented in

A

A A

. 0 P
5 P i o Y +]1y4,,,1 »and [ 7 I1 ,112 p —Ixc,,.lzye,, or double-

the effective zero/double quantum @ stem as shown to the left in Fig. 2, spanned by the zero-
[

quantum (ZQ) fzzf? = %(flze,f -

1

~

P ] o
,,) =00, -1 ,0, ad %=1, ,+I,

’\o
Q

quantum (DQ) 177

2x
operators[33]. In the Mw space, the effective dipolar coupling Hamiltonian is illustrated with the

red arrows représentinig the direction and strength of the Hamiltonian for different crystal angles in Fig.

- 4
(U |
o Figure 2
)

b}@lculating the effective Hamiltonian when resonance conditions are not exactly met
Strictly speaking, Eq. (13) is only fulfilled at the exact resonance condition. But obviously the

effective Hamiltonian is not zero when Eq. (13) is almost but not exactly fulfilled. Thus, we define a

11
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hold for theThamimmumigteviatienptdday J. fiom. iy sastidance wopditioreaind tieetosdnance conditions

AlP

Publi#kKifg" sidered matched whenever the following condition is met

el eff
‘noa}r +ko, +ko,, +11a’1,11 +12a’1,12

<Aoo, . (15)

The size for the proposed Aw__ is not well-defined but certain re?r'ctions are required Aw,_to
ensure an approximately correct effective Hamiltonian. It is required t l.sm smaller (more than a

factor of 2) than the spinning frequency. Otherwise, Eq. (16) may b& d multiple times which will
1

lead to an overall wrong effective Hamiltonian in Eq. (14). AGditi , the maximum allowed value

—
depends on the magnitude of ]qugﬁ the effective rf Hamilton@- (), i.e., the approximation is valid

for Aw,,, <<.|o, +( lm)z P

\

miltonian in Eq. (14). By allowing additional

~
contributions to the effective dipola&c% Hamiltonian, we have to add a correction term. In

general, we define the correction teS\\ v S Ao, that fulfills
‘@]m +k,0,, +la)eﬁ +12a)ﬁf-f; =Aw,,, . (16)

The correction tem%-m\be‘ 1e<ved as being compensated to either one of the two effective field

In Eq. (15) we have artificially changed thevallo resonance conditions which will be summed
i&i{

to give the total effective dipolar-co

frequencies wﬁff she single-spin operators cannot be differentiated in the DQ/ZQ subspace of the

effective dipo /coyling Hamiltonian. Therefore, the correction to the effective dipolar coupling
ﬂ

Hamiltoni shobld take the form of the operator that is along the corresponding effective axis fq g -
—_— Iz

illustrated in Fig. 2B with a green arrow presented in the longitudinal direction in the ZQ/DQ

Looking at Eq. (16), the reason to define Aw is that it can take different values for different

near

resonance conditions that may be fulfilled within the allowed range in Eq. (15). The effective time-

12
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A Iiﬁel dent dipolas menpling wlsaatksedasy InCiem (Bl wiltibe the sssmodeaibaboewdiconditions in Eq.

PUblithél)n%r d may therefore contain both DQ and ZQ terms. However, only one value for Aw,, can be

chosen for the total effective Hamiltonian which is given by

=A) tha,, 172 (17)

near

where the correction term can either be added or subtracted depending twection to the effective

field frequency a)f{’; . This correction term can be viewed as &e of the effective rf field

Hamiltonian in Eq. (5) by the amount FAw, I o/bo

near” ,

and shoul rifteiple only take one value for one
-

particular rf-interaction frame transformation. But th effﬁ}tive dipolar coupling Hamiltonian

contain both DQ and ZQ terms at different resonaae\dﬁ)ns, we propose to collect all resonance
L

terms even though it corresponds to different rf @1 rame transformations.

To select the size of Aw,,, In Eq.w&compare the scaling factor of effective dipolar

coupling Hamiltonian for all specific eson>e ‘conditions in Eq. (14). Then, we choose the value for
go

Aw, . in Eq. (17) which gives the

near

nding highest scaling factor.

xi{ frame. In order to get the correct time evolution with the effective

D) Propagation with t. eﬂeﬁe miltonian
Up to this poinf, we“have determined the effective time-independent dipolar coupling
£
tiv

Hamiltonian in the 2/ C
Hamiltonian in Eq. (?)) compared to exact numerical simulations, it is required that the time step for the

propagation time 4s given by the greatest common divisor (gcd) between the spinning frequency and

dulati -fr\
modulati equen
A%

contifigous \Q)ave (CW) pulse scheme is analyzed where 7, is not defined, we set 7, =2%. Furthermore,

_ 27
» T T ed(o,0)

which ensures that 7, is always a multiple of 7, and 7, . In case a

theﬁati\on caused by the effective field frequency a)f’f; Iqueﬁ. has to be contained in the propagation.

Hence, at time 7, we do not have a cyclic time in the effective rf Hamiltonian interaction frame. This

13
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is causirlg ame venalcipiakiandhgids mol prrsemhy. hadotal-abfeaiive ddeimilioriadin Eq. (17) due to

AlP

.anera ing. Accordingly, the evolution of the density operator is given as
Publishin
i z a)if{q iqze/f Tmix = = —i z quq iqzeff Tmix
,b (z.mx ) L e HiorTix /”) (0) oMot o 412 , (18)

where 7,, =nz, and n is an integer. It is noted that before calculating(}ae evolution in Eq. (18), we
transform back into the conventional rotating frame coordinate syste b@qngle rotations defined

by taking the I o Operator and rotate this into / .- With the oppositeotatign direction as described in

Subsection A) and given by I o= R(aeﬁ., By Ve )Jr IAqZWR(a@ H
)

-

Simulations and Discussion 3
We will in this section show that the pro s%retlcal framework can explain how isotropic

chemical shift influences the performance ft dj.wcoupling sequences. We have chosen to analyze

the symmetry-based dipolar recoupling ma}enc C7, [14] and POST-C7, [15]. A schematic
-

of a basic element that is repeated se times with an incremental phase for each basic element by

2n/7. The seven basic ele e@m&:d such that the overall sequence takes two rotor periods and the

representation for the C7 symmetry-qu%% sequence is presented in Fig. 3A. The sequences consist

rf field strength is cofist rouighout the sequence fulfilling @ =7w,. The basic element for the

original C7) se en%%sts of two pulses which for the first element are phase-alternated between x

and —x phasé.and/whetre each pulse gives rise to an overall 27 -rotation (lower left in Fig. 3A). The

=
basic ele@sth POST-C7) sequence consists of three pulses that are phase-alternated between x,

-
—X av(@%oectively. The flip angle for each pulse is adjusted such that the first pulse gives a $7 -

rothl,*the second pulse a 27 -rotation, and the third pulse a 2 7 -rotation (lower right in Fig. 3A).
For the analysis of the sequences, we start by determining the effective axis of rotation Ique,f for

the entire pulse element (for both sequences, the period of the (POST-)C7 element is two rotor periods

14
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E I\Tﬁh sives |, Thisananuseript Waanckepted byrkeSponding. Effelctive tfisldtfrequimay reoffd. fdr each spin g,
Publisdpargtely. To differentiate between DQ and ZQ resonance conditions, we always define the positive

operator qu(,,, whereas the scaling @ can be either positive or negative for the respective nuclei. In
y 1,

Fig. 3B (for C7}) and 3C (for POST-C7)), the sum of the two independent projections of the effective

field Hamiltonian onto the x, y and z axis of the rotating frame coordéwtem as a function of

chemical-shift offset is presented. For the size, we have use ¢ short notation given by
‘<ij ol jlszf>+<j2j ol fzze,,> /27 =|off +f] |/ 27 . The cal uléa)g‘_sie resent conditions of 5.0 kHz

-
MAS and rf field strength @, /27 =35 kHz. In the cases prgwed,ﬁt turns out that the effective axis are

-

either undefined (for cyclic rotation for the respe& sf@le-spin operators) or almost along the
conventional z-axis with operator / . (for not CMI n for the respectively single-spin operators).

The reason for summing and not subtractirér\e\fm) effective field frequencies is that for both C7
variants, the effective first-order dipi ling Hamiltonian is given by DQ operators [14, 15].

Hence, the sum of the effective fi d@qies will interfere with the recoupled dipolar Hamiltonian

with (a)f{ + o] )IAZDe,fQ in a similarway as presented in Fig. 2B and by Eq. (17).
/K Figure 3

4
t% z-egmponent in Figs. 3B and 3C, it is obvious that the influence of isotropic

chemical-shiq\ or the POST element is significantly minimized relative to the original C7)

Looking a

4

dalculated chemical-shift offset region, the absolute size |0 + ¥

o] +@] |/ 27 is below
>4 212

£

sequencef Over t3
-

140 @e OST-C7, sequence whereas for the C7, sequence the value is getting higher than 600

\ <

We have determined the total effective Hamiltonian in Eq. (17) under the conditions given in

Figs. 3B and 3C. This is done by initially calculating the effective dipolar Hamiltonian in Eq. (14) by

15
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syumming over athiahlemiediposensiesteadyditiiam. PhyEaCI(dS)-and sébdie fersiolhst el effective dipolar

Pub”%(huiﬂlér g Hamiltonian will contain both DQ and ZQ terms. As mentioned, we decide a threshold Aw,

for which the resonance conditions are fulfilled. For the threshold, we have used the size of the dipolar

coupling constant which in the following is set to b, , /27 =1.0 kHz. The resonance conditions for both

C7, sequences must fulfill / \
< Ao&,w\. (19)
™

If the rf pulse is applied on-resonance (VZ.IS"O =0 Hz) forboth'spins, the effective field frequencies

1 1 eff efff
‘(n0 +1k +1k,) o, + Lof] + Lo

a)f/{q will be zero as the effective rf Hamiltonian in Eq. (5) is ic. In this case Eq. (17) will only be

fulfilled when n, +1k, ++k, =0. The values for % ‘ean be any integer number according to Eq.
fo

(8) but for practical reasons, we also set a t@:{\ largest absolute allowed values for these. We

have defined the threshold by the size of Nsrre onding Fourier coefficients, a_ o We have only
-y o

allowed values for &, and k, for @\J >107. This threshold gives values for &, and k, up to

125 for the analyzed seque es.%‘s sum of resonance conditions can be avoided (as discussed in the

theory section), by combining«dimensions with commensurate frequencies, i.e., in our case by

(20)

\When the rf pulse is applied off-resonance (Vils"o #0 Hz) for both spins, the effective field

frequencies a)f@ will be finite and the effective rf Hamiltonians in Eq. (5) are not cyclic for the

16
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! Iiiﬁ,id 1a] spins This thisweespthgs atOpearbpe. finkil] eiybydbiodn DQo(ssdeie Versidn parrdodlQ (when /, = —1,)
Publi&§pagtice conditions. However, the scaling of the effective dipolar coupling Hamiltonian is much larger

for the DQ than for ZQ resonance conditions implying that Aw,, . =

near

eff eff
oy T o,

as presented in Figs. 3B

and 3C. It is also seen that

eff el
oy o,

<Aw,, <o, over the entire offset grid. These considerations

imply that the total effective Hamiltonian in Eq. (17) is given by /\

1 ~
_ 7 (g oy ey oy o0 )
= Z Z HE ) L A T (21)
ny+Lky+1ky =041, =1 ra>
'-...,_\

If the rf pulse is applied off-resonance (v’

50

|

#0 Hz) for spin'J ana on-resonance (v;2 =0 Hz) for spin

G

fz or visa versa, then the expression for the total eﬁge@mﬂtonian is given by Eq. (21) but /, 1s

limited to only taking the value zero. \\
\
SFI ed

.

To verify if the calculated @V time-independent Hamiltonian is correct, we compare

in Fig. 4 the propagation under the “effective Hamiltonian with the direct-propagation numerical

SIMPSON simulations [34 (@gs. 4A and 4C, the simulated transfer efficiencies are shown for a
-
of

two-spin system as fydctl cliemical-shift offset for both the original C 7, sequence (Fig. 4A) and

for POST-C7, @g. 4C). The simulations were performed using the calculated effective
dp
V.

Hamiltonian ropagating according to Eq. (24) with a total mixing time of 3.2 ms (M=8). Powder
-
averagin usingg}l cr and 320 ocr, Pck REPULSION [36] crystallite angles were used with CR
—

denoting theScransformation from the crystal axis frame to the rotor axis frame. By comparing Figs. 3B

W as well as Figs. 3C with 4C, it can be seen that the overall transfer performance is highly

dependent on the effective field frequencies aﬁf. This implies that the information content in the

effective axes and the effective field frequencies can be used to judge the transfer efficiencies as

17
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Publi

'510 1 of chermigghihilcaptseds dcbajstedbini nUkengPgsilions dn (heetiectnpdioledsagudncies by using
OJI')]t.lml ation procedures on quaternions may potentially be used to compensate for large chemical-shift
variations. This is due to the fact that the resonance conditions are dependent on only up to two

eff

frequencies for each spin (@, and @ ) where only @} changes when the offset is varied. Also, the

calculation of a)eﬂ is much faster than performing a full direct propagation using the time-dependent

Hamiltonian in Eq. (1).

In Figs. 4B and 4D, we have simulated the transfer efficiencies«by direct-propagation using the
numerical SIMPSON software package. The results are presented uging the same settings as in Fig. 4A
and 4C, respectively. By comparing the simulations in Fig. 4A with 4B and Fig. 4C with 4D, it can be
seen that the proposed theoretical model is indeed rgpresenting the full spin-dynamics with greater the
99.5% accuracy. This illustrates that the detegmined first-order effective Hamiltonian found by the
proposed theoretical description mimics the total time=dependent Hamiltonian in Eq. (1) to a really good
approximation.

Conclusions

In conclusion, we have presentéd _a general theoretical description of how to handle isotropic
chemical shift effects for dipolar recoupling experiments under magic-angle-spinning. By considering
the isotropic chemicalghiftand the rf field together, the influence of chemical shift offset can directly be
ascribed to a chafige in the dipolar resonance conditions for the first-order effective Hamiltonian.
Additionally, #we have_shown that the low transfer efficiencies encountered under near-resonance
conditiong can be“explained by an effective field along the effective axis in the related zero/double-

quantimssubspact. We have verified the proposed model and shown that the found first-order effective

Hamiltonian for two versions of the symmetry-based pulse sequence C7, gives same numerical results

as found by numerical simulations using the SIMPSON software package. From the proposed

description, we have shown that by representing the time-dependencies of single-spin operators with up

to two frequencies for each spin (@, and co” ), we can obtain useful information to judge the overall

18
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Arﬁ)m lance pf Ehiy panserspquaaceeMbbydyvEheit. Rhwh 6ok hhaitmsﬂg/ﬂwﬁ‘%rsﬁimfgesqrdvhén the offset is

Publisiming and affects the transfer efficiency. This insight may be exploited for faster optimizations for
better offset compensation.
Supplementary Material

See supplementary material for details on how to determine the/time-dependency of a given

single-spin operator in the interaction frame of the effective rf field H ﬂ'f'anian.
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Fig. 1. (A) Schematic representation of a pulse eleme@ogs'sstlng of four pulses which is repeated M

times. All pulses have the same field strength q@lr‘aﬁon 7,. (B) Single-spin subspace for the

time-evolution of interaction frame single sp fz using the conditions for the effective

rf Hamiltonian given by @" =5.0 k

150

Wit>ﬁ1 /27 =9.0 kHz and 7, =100 ps. The red dots represent

.\

he red axis illustrating the effective axis of rotation, I g (C)

the density operator as function of

Shows the conventional single-sp1 ubspace (black coordinate system) and the subspace (red and green

lines) in which the effeetive axis

line). / /
) 3\

rotation for the pulse sequence is aligned with the new z-axis (red
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Fig. 2. The zero-/double-quantum subspace‘&hk fective Hamiltonian in the effective axis

coordinate system with the red arrows gepresenting the strength of the effective dipolar coupling

Hamiltonian for different crystal angl(\h10> the resonance condition in Eq. (13) is fulfilled whereas
DR

in (B) the resonance condition is%e to be fulfilled according to Eq. (15). The green arrow

indicates the amount that is

d&%([) the" effective Hamiltonian to fulfill a resonance condition. This

term will be along the z-aXis in the effective axis zero-/double-quantum subspace.
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Fig. 3. (A) Schematic represent im&?& symmetry-based C7, pulse sequence using either the

original element consisting fi first element of two 27 rotations with opposite phases (lower left) or

the POST element consi ing 0 rotation along the x-axis followed by 27 rotation along —x and
th

finally a & rotationé@q& -axis (lower right). (B) and (C) shows the magnitude of the sum of the

effective frequ % + ol

y- (middlé)~“and s (right) as a function of /; and I-spin chemical shift offsets for C7, pulse

/ 27 for the conventional rotating frame coordinate system for x- (left),

sequénce (B the POST-C7, pulse sequence (C). The calculations were done for @, /27 =5.0 kHz

)

itha'rf field strength fulfilling @, / 27 =35 kHz.
~
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Fig. 4. Numerical simulations for the\/\%> %, transfer efficiencies as a function of /, and I,-spin

chemical shift offsets for the (A, B)%ﬁ\and (C, D) and POST-C7, pulse sequences. For (A) and (C)

the calculations were do e@e effective Hamiltonian given in Eq. (22) and performing the
£
0

propagation accordir?f t (2}). For (B) and (D) the calculations were done using the SIMPSON

software packag 31)%01 simulations were done for @, /27 =5.0 kHz MAS with a total mixing

time set to 8.2 nis (Ms8) with rf field strength fulfilling @, /27 =35 kHz. The dipolar coupling

,ﬁ
constant % to blll2 /27 =1.0 kHz and powder averaging using 11 ycg and 320 ocr, PBcr

—

REP SIOS [36] crystallite angles with CR denoting the transformation from the crystal axis frame to

th mmis frame.
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