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Abstract 

We present a general theoretical description that allows to describe the influence of isotropic 

chemical shift in homonuclear and heteronuclear dipolar recoupling experiments in magic-angle-

spinning solid-state NMR. Through a transformation of the Hamiltonian into an interaction frame with 

the combined radio-frequency irradiation and the isotropic chemical shift, we determine an effective 

Hamiltonian to first order with respect to the relevant internal nuclear spin interactions. This unravels 

the essential resonance conditions for efficient dipolar recoupling. Furthermore, we propose how to 

handle situations where the resonance conditions are not exactly fulfilled. To verify the general 

theoretical description, we compare numerical simulations using a time-sliced time-dependent 

Hamiltonian with simulations using the calculated effective Hamiltonian for propagation. The 

comparisons are exemplified for the homonuclear dipolar recoupling experiments 1
27C  and POST- 1

27C .  

 

 

 
KEYWORDS: Solid-state NMR spectroscopy, Dipolar recoupling experiments, Floquet theory. 
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Introduction 

Dipolar recoupling among spin-1/2 nuclei is routinely used in biological magic-angle-spinning 

(MAS) NMR to gain valuable insight into the atomic structure of complex systems [1-6]. To ensure 

efficient transfer of polarization between spins and accurate measurement of internuclear distances 

using dipolar couplings, a lot of effort has been devoted to develop efficient dipolar recoupling 

experiments for a variety of different nuclear spin systems and experimental conditions. This has led to 

numerous different dipolar recoupling sequences for either homo- or heteronuclear polarization transfer 

[7-9]. 

Most of the existing dipolar recoupling experiments have been developed using average 

Hamiltonian theory [10-13] (AHT) which has proven to be a powerful tool to analyze the action of 

challenging multi-pulse experiments in simple terms. An example of quite advanced experiments 

developed by such means are the symmetry-based pulse sequences [14-18]. Here, symmetry arguments 

have been used to develop selection rules to construct elegant pulse sequences with robust behaviors 

with respect to challenges such as rf inhomogeneity and large variations in isotropic chemical shifts 

while ensuring high polarization-transfer efficiency.  

In particular, the influence of isotropic chemical shifts has been carefully analyzed since the 

perturbations from chemical-shift offsets in practical applications often exceeds the magnitude of the 

recoupled effective dipolar-coupling Hamiltonian. Thus, a basic need for dipolar recoupling pulse 

sequences is the ability to suppress the isotropic chemical shift for certain spectral regions. This can be 

highly challenging to fulfill for nuclear spin pairs with small dipolar couplings and large chemical-shift 

dispersions considering the practical limitations for the rf-field strengths. An example of improved 

compensation of isotropic chemical shift is the development of the so-called POST [15] element for the 

C-symmetry sequences. Based on higher-order average Hamiltonian calculations [12, 15], the POST 

element was proven to be better than a simple 2πx2π-x element in terms of offset compensation [15].  

Alternatively, one may consider the isotropic chemical shift and the rf field together. Such an 

approach was applied for the description of the Rotational Resonance Tickling (R2T) dipolar recoupling 
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experiment [19], the band-selective homonuclear CP (BSH-CP) experiment [20] , and recently 

addressed for the so-called four-pulse recoupling (FPR) scheme [21]. The same method has also been 

used for homonuclear decoupling experiments with the Lee-Goldburg (LG) scheme [22] and the 

phase/frequency modulated (PMLG/FSLG) variants [23, 24]. In general, there are two main advantages 

of considering the isotropic chemical shift and the rf field together in the interaction-frame 

transformation: (i) The convergence of the series expansion is faster since the chemical-shift offset is 

often the biggest term in the spin-system Hamiltonian. This makes the theoretical description to 

determine the effective Hamiltonian simpler. (ii) The effective Hamiltonian will not contain any terms 

involving isotropic chemical shifts which will reduce the number of terms to calculate for the total 

effective Hamiltonian to a given order. However, such an approach has been used for relatively few 

experiments as this method will often break the requirement that the Hamiltonian has to be cyclic over 

the entire period of the pulse element – in particular when varying the isotropic chemical shift. To 

handle such problems, another approach is to use Floquet theory [25-27], where the effective 

Hamiltonian can be found even when the Hamiltonian involves several time dependencies which are not 

commensurate. 

Knowledge concerning the effective time-independent Hamiltonian under any rf sequence 

provides certain advantages compared to performing numerical simulations based on time slicing of the 

time-dependent Hamiltonian. Besides the analytical insight which can be helpful to develop improved 

pulse schemes, the effective Hamiltonian found by analytical means can be determined independently 

for larger multi-spin systems by calculating and collecting the various terms separately. Combining such 

an approach with sparse matrix algorithms, as has been done for liquid-state NMR [28], may be useful 

to perform approximate simulations for larger spin systems in solids than is possible by direct numerical 

propagation procedures of the time-dependent Hamiltonian. 

In this paper, we present a general concept to describe the influence of isotropic chemical shift 

under general amplitude and phase-modulated dipolar recoupling experiments. By transforming the 

Hamiltonian into an interaction frame using the effective field in a tilted frame, we present a general 
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operator-based Floquet framework to determine the effective dipolar-coupling Hamiltonian. This 

formulation circumvents the requirement that the Hamiltonian has to be cyclic over the entire period of 

the pulse element. Additionally, it is proposed how to implement near-resonance conditions for finding 

the approximate effective Hamiltonian.  

To describe the various elements of this new and general approach to pulse sequence analysis 

and design, we have split the theory section into four sub-sections to describe the proposed stepwise 

procedure. A repeating pulse element consisting of four pulses is used as an introductory example with 

the note that the pulse sequence itself does not have any applications. We then, as the second and more 

useful example, employ the theoretical framework to show how isotropic chemical shift influences the 

symmetry-based pulse sequences 1
27C  [14] and POST- 1

27C  [15]. 

 

Theory 

 For the theoretical description, we will consider two homonuclear coupled spin-1/2 nuclei, 1̂I  

and 2̂I , in the rotating frame (the Zeeman interaction frame). The time-dependent Hamiltonian includes 

the isotropic chemical shifts and the homonuclear dipole-dipole coupling under MAS and rf irradiation 

and is given by  

      
1 2rf

ˆ ˆ ˆ ˆ
qI I IH t H H t H t      (1) 

with          
2

rf 1
1

ˆ ˆ ˆcos sinqx qy
q

H t t I t I t  


       (2) 

 
2

I
1

ˆ ˆ
q qI qz

q

H I


    (3) 

      r

1 2 1 2

2

I I 1 2 1 2 1 2
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2n in t
I I z z x x y y

n

H t e I I I I I I


    ,   (4) 
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where the angular frequencies 
1I

  and 
2I  are the isotropic chemical shifts,  

1 2I I
n  the dipolar coupling, 

and r  the spinning frequency. The rf irradiation at a given time is described by the instantaneous 

amplitude  1 t  and phase  t  in the transverse (x-y) plane. The anisotropic part of the chemical-shift 

Hamiltonian is not included in the interaction-frame transformation and will be described by higher-

order terms in the effective Hamiltonian. The way to calculate these terms has recently been presented 

elsewhere [29, 30]. We note that the presented description is also valid for a heteronuclear dipolar 

coupling interaction with a truncation of the planar (terms containing the operators ˆ
xI  and ˆ

yI ) operator 

terms of the dipolar Hamiltonian in Eq. (4). 

 Our goal is to calculate an approximate first-order effective time-independent Hamiltonian for 

the time-dependent Hamiltonian of Eq. (1) to characterize the time evolution of the nuclear spin 

systems. The sections below explain systematically step by step the theoretical process we propose. In 

section A), we show how to determine the effective axis of rotation and the corresponding effective 

frequency for the effective rf Hamiltonian represented by both Eq. (2) and Eq. (3). The effective axis of 

rotation and corresponding effective frequency are employed to determine the time dependence of a 

given single-spin operator in the tilted interaction frame of the effective rf-field Hamiltonian. This is 

presented in the supplementary material. In section B), we show the time dependencies for the dipolar 

coupling Hamiltonian in the effective rf interaction frame and present a general operator-based Floquet 

framework to determine the first-order effective Hamiltonian. In section C), we demonstrate how to 

handle situations where the resonance conditions are not exactly met. Finally, in section D), we show 

how to propagate with the determined effective Hamiltonian.  

A) The effective frequencies and axis of rotation for the effective rf Hamiltonian 

We transform Eq. (1) into an interaction frame containing both the rf Hamiltonian of Eq. (2) and 

the chemical-shift Hamiltonian of Eq. (3) for each of the two spins separately. This results in a double-

rotating frame with, in general, different frequencies and different axes for the two spins. To do so, we 
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define an effective rf-field Hamiltonian for each spin which will be used for the interaction-frame 

transformation  

          I

1f ,
ˆ ˆ ˆ ˆcos sinq

eff iso qz qx qyr q
H t I t I t I t          , (5) 

where Iq

qiso I rf     is the isotropic chemical-shift offset relative to the rf carrier frequency and rf  

denotes the carrier frequency while q  refers to the two different nuclei and can take the values 1 or 2. 

As an example we consider a pulse element consisting of four pulses which are repeated M times 

as presented in Fig. 1A. The time of the repeating pulse element can be defined by m , which for the 

present pulse example is given by 4m p  . This implies that    
f , f ,

ˆ ˆ
eff eff mr q r q

H t H t   and the total 

mixing time for the experiment is mM . 

Figure 1 

Taking into account the isotropic chemical shift in the effective rf Hamiltonian will often break 

the periodicity of the pulse element (i.e., the effective rf Hamiltonian will cause an overall rotation over 

the time m ) and, therefore, introduce a nutation around an effective axis. The orientation of the 

effective axis of rotation for any pulse sequence can be calculated in many ways, e.g., using quaternions 

[31]. The effective axis for the effective rf Hamiltonian in Eq. (5) using the element in Fig. 1A is 

illustrated in the single-spin subspace by the red axis in Fig. 1B. The red dots represent the density 

operator as function of M pulse sequence elements and using the initial operator   ˆˆ 0 qzI  . The 

effective nutation frequency 1,Iq

eff  tells how fast the single-spin operators nutates around the effective 

axis as a function of mM . 

Equipped with the direction and magnitude of the effective axis of rotation, we define a new 

tilted single-spin subspace as shown in Fig. 1C. In this subspace, the red line corresponds to the 

effective axis of rotation for the complete pulse sequence and we define this axis as the effective z-axis 
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with the operator, ˆ
effqz

I . We have chosen to use Euler angle rotations  , ,eff eff effR     defined by taking 

the q̂zI  operator and transform it into ˆ
effqz

I  with    †ˆ ˆ, , , ,eff eff eff eff qz eff eff effqz
I R I R       where the 

same transformation is also used to rotate q̂xI  into ˆ
effqx

I  and  q̂yI  into ˆ
effqy

I  (green lines in Fig. 1C). 

Under conditions where the effective rf Hamiltonian leads to an overall cyclic rotation, the effective axis 

of rotation is undefined in the calculation. Under these conditions, no new effective coordinate system is 

found and the conventional single-spin subspace shown in black in Fig. 1C is used with ˆ ˆ
eff qjqj

I I  where 

j can take the values x, y, or z and effj  can take the values effx , effy , or effz . 

As the effective rf-field Hamiltonian in Eq. (5) depends on the isotropic chemical-shift offset, we 

transform the dipolar-coupling Hamiltonian into the effective rf-field interaction frame for each spin 

operator separately given by  

      †ˆ ˆ ˆ ˆ
qj qjI t U t I U t

     ,    
 

f ,
ˆ

ˆ ˆ

t

effr q
o

i H t dt

U t Te
  

   , (6) 

where j refers to the initial operator at t = 0 and takes the index z for a heteronuclear dipolar coupling 

Hamiltonian and j is either x, y, and z for a homonuclear dipolar coupling Hamiltonian. T̂  denotes the 

Dyson time-ordering operator.  

In order to conveniently express the time-dependencies of each single-spin operator in the 

effective rf-field interaction frame of Eq. (6), we employ the effective axis of rotation and the 

corresponding effective field frequency 1,Iq

eff  as presented in the supplementary material. 

 

B) Calculating the effective Hamiltonian 

In the effective rf field interaction frame, the overall Hamiltonian will only contain terms from 

the dipolar coupling (originating from Eq. (4)) given by 

                 r

1 2 1 2

2

I I 1 2 1 2 1 2
2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2n in t
I I z z x x y y

n

H t e I t I t I t I t I t I t


        
  , (7) 

http://dx.doi.org/10.1063/1.4979123


 9

where each of the two single-spin operators in the effective rf field interaction frame can be written in 

the tilted frame of the effective field as 

        ,x , ,y , , ,
ˆ ˆ ˆ ˆ

eff eff effeff eff effqj q j q j q z jqx qy qz
I t c t I c t I c t I  

  , (7a) 

and the time-dependent coefficients are defined as discussed in the supplementary material. One can 

always rewrite Eq. (7) in a compact form using Fourier series given by  

     1 21,I 1,I1 2 1 2 1 1 2 2r 1 2

1 2 1 2

1 2 1 2

2
, , ,l ,l

2

ˆ ˆ
eff eff

m m
il t il tn k k ik t ik tin t

I I I I
n k k l l

H t H e e e e e
  

 

  

     
  , (8) 

where 1l  and 2l  can only take the value zero when the effective rf field Hamiltonian in Eq. (5) is causing 

an overall cyclic rotation for the respective single-spin operators over period m . This restriction can be 

understood by that the effective axis is not defined in this situation. 1l  and 2l  can take the values 0 (for 

terms containing the operator ˆ
effqz

I  along the effective axis) and 1  (for terms containing the operator 

ˆ
effqx

I  and ˆ
effqy

I ) when the effective rf field Hamiltonian in Eq. (5) is not causing an overall cyclic 

rotation for the respectively single-spin operators over period m . The frequencies qm  relate to the total 

time of the basic element by 2 /qm qm    which in the homonuclear case will fulfill 1 2m m  . 

However, this is not necessarily the case in heteronuclear experiments where two different pulse 

elements can be employed on the two spins. The Fourier components  1 2 1 2

1 2

, , ,l ,lˆ n k k
I IH


 are given by 

    1 2

1 2 1 2 1 2

, , ,0,0
I I , , , , 1 2

,

ˆ ˆ ˆ
eff eff eff eff

eff

n k k n
I I k j j k j j j j

j j

H a a I I 
  , (9) 

        1 2

1 2 1 2 21 2 2

, , ,0, 1
I I ,y, j , ,, , 1 ,x , ,y , 2 2

,

ˆ ˆ ˆ ˆ
eff eff eff eff eff eff

q
eff

n k k n
I I k k x jk j j j k j k j x y

j j

H a I a ia I a ia I    
 

   , (10) 

        1 2

1 2 1 2 1 1 1 1 2

, , , 1,0
I I ,x , ,y , 1 ,y , ,x , 1 , , 2

,

ˆ ˆ ˆ ˆ
eff eff eff eff eff eff eff eff

eff

n k k n
I I k j k j x k j k j y k j j j

j j

H a ia I a ia I a I    
 

   , (11) 

http://dx.doi.org/10.1063/1.4979123


 10

        1 2

1 2

2
, , , 1, 1

,x , ,y , ,y , ,x ,
1

1 2I I
ˆ ˆ ˆ

eff eff eff eff eff eff
q q q q

n k k
I I k j k j qx k j k j qy

j q

n
H a ia I a ia I 



     
 , (12) 

with j taking the indices x, y, or z for a homonuclear dipolar coupling interaction while j z  for a 

heteronuclear dipolar coupling interaction due to truncation of planar terms. effj  takes the indices effx , 

effy  or effz  when the effective rf field Hamiltonian in Eq. (5) is causing an overall cyclic rotation, 

respectively, for the single-spin operators and eff effj z  if not. This implies that if both involved spins 

experience an overall cyclic rotation, it is only Eq. (9) that exists. If one of the involved spins 

experience an overall cyclic rotation and the other do not, then Eq. (9) and either Eq. (10) or Eq. (11) are 

active. Finally, if both spins do not experience an overall cyclic rotation then all Fourier components in 

Eqs. (9)-(12) exist. The complex Fourier coefficients 
, ,eff

qk j j
a  are determined as presented in 

supplementary material. We note that the Fourier components in Eqs. (9-12) are represented in the tilted 

effective frame.  

From Eq. (8), it can be seen that the dipolar-coupling Hamiltonian in the effective rf-field 

interaction frame contains terms with up to five fundamental frequencies given by rin te  , q mik te  , and 

1,I
eff

q q
il t

e


. In Floquet theory, the number of fundamental frequencies can always be reduced if two 

frequencies are commensurate by describing them using the greatest common divisor. In our case, the 

total time of the basic elements are the same for homonuclear recoupling sequences with 1 2m m   and 

such sequences can always be described by collapsing the two Floquet dimensions into a single one. 

Such a description would require two-spin Fourier coefficients for the nine two-spin operators. For 

convenience and generality (heteronuclear recoupling), we only use the single-spin coefficients 
, ,eff

qk j j
a  

corresponding to single-spin operator transformation and use them to calculate effective Hamiltonians. 

In such a single-spin description, the calculation of the Fourier coefficients is simpler and more 
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transparent but the number of possible resonance conditions becomes infinite due to the many possible 

combinations of the two frequencies in the resonance conditions. 

The time-independent first-order dipolar Hamiltonian obtained from operator-based Floquet 

theory is given by the set of quintuples of integers that satisfy the resonance conditions [27, 30, 32] 

 
1 20 1 1 2 2 1 1,I 2 1,I 0eff eff

r m mn k k l l         .   (13) 

The effective time-independent dipolar coupling Hamiltonian at these resonance conditions can be 

found by collecting the terms for which Eq. (13) is fulfilled  

    0 1 2 1 2

1 2 1 2

0 1 2 1 2

, , ,l ,l1

, , ,l ,l

ˆ ˆ n k k
I I I I

n k k

H H  
  . (14) 

 As the Fourier components  1 2 1 2

1 2

, , ,l ,lˆ n k k
I IH


 in Eq. (14) contain products of operators of the form 

ˆ
effqj

I according to the Eqs. (9) - (12), the effective dipolar coupling Hamiltonian can be represented in 

the effective zero/double quantum coordinate system as shown to the left in Fig. 2, spanned by the zero-

quantum (ZQ)  1
2 1 2

ˆ ˆ ˆ
eff eff eff

ZQ

z z z
I I I  ,  

1 2 1 2
ˆ ˆ ˆ ˆ ˆ

eff eff eff eff eff

ZQ

x x x y y
I I I I I  and 

1 2 1 2
ˆ ˆ ˆ ˆ ˆ

eff eff eff eff eff

ZQ

y y x x y
I I I I I   or double-

quantum (DQ)  1
2 1 2

ˆ ˆ ˆ
eff eff eff

DQ

z z z
I I I  , 

1 2 1 2
ˆ ˆ ˆ ˆ ˆ

eff eff eff eff eff

DQ

x x x y y
I I I I I   and 

1 2 1 2
ˆ ˆ ˆ ˆ ˆ

eff eff eff eff eff

DQ

y x y y x
I I I I I   

operators[33]. In the ZQ/DQ subspace, the effective dipolar coupling Hamiltonian is illustrated with the 

red arrows representing the direction and strength of the Hamiltonian for different crystal angles in Fig. 

2. 

 Figure 2 

C) Calculating the effective Hamiltonian when resonance conditions are not exactly met 

Strictly speaking, Eq. (13) is only fulfilled at the exact resonance condition. But obviously the 

effective Hamiltonian is not zero when Eq. (13) is almost but not exactly fulfilled. Thus, we define a 
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threshold for the maximum deviation max  from the resonance condition and the resonance conditions 

are considered matched whenever the following condition is met   

 
1 20 1 1 2 2 1 1,I 2 1,I max

eff eff
r m mn k k l l             . (15) 

The size for the proposed max  is not well-defined but certain restrictions are required max to 

ensure an approximately correct effective Hamiltonian. It is required that max  is smaller (more than a 

factor of 2) than the spinning frequency. Otherwise, Eq. (16) may be fulfilled multiple times which will 

lead to an overall wrong effective Hamiltonian in Eq. (14). Additionally, the maximum allowed value 

depends on the magnitude of ˆ
effqz

I  the effective rf Hamiltonian in Eq. (5), i.e., the approximation is valid 

for  2I2
max 1

q

iso     .  

In Eq. (15) we have artificially changed the allowed resonance conditions which will be summed 

to give the total effective dipolar-coupling Hamiltonian in Eq. (14). By allowing additional 

contributions to the effective dipolar coupling Hamiltonian, we have to add a correction term. In 

general, we define the correction term by maxnear     that fulfills  

 
1 20 1 1 2 2 1 1,I 2 1,I

eff eff
r m m nearn k k l l             . (16) 

The correction term can be viewed as being compensated to either one of the two effective field 

frequencies 1,Iq

eff  as the single-spin operators cannot be differentiated in the DQ/ZQ subspace of the 

effective dipolar coupling Hamiltonian. Therefore, the correction to the effective dipolar coupling 

Hamiltonian should take the form of the operator that is along the corresponding effective axis ˆ
effqz

I . 

This is illustrated in Fig. 2B with a green arrow presented in the longitudinal direction in the ZQ/DQ 

subspace.  

Looking at Eq. (16), the reason to define near  is that it can take different values for different 

resonance conditions that may be fulfilled within the allowed range in Eq. (15). The effective time-
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independent dipolar coupling Hamiltonian in Eq. (14) will be the sum of all allowed conditions in Eq. 

(16) and may therefore contain both DQ and ZQ terms. However, only one value for near  can be 

chosen for the total effective Hamiltonian which is given by  

  
1 2

1 /ˆ ˆ ˆ
eff

ZQ DQ
tot I I near z

H H I  
  , (17) 

where the correction term can either be added or subtracted depending on the correction to the effective 

field frequency 1,Iq

eff . This correction term can be viewed as a change of the effective rf field 

Hamiltonian in Eq. (5) by the amount /ˆ
eff

ZQ DQ
near z

I  and should in principle only take one value for one 

particular rf-interaction frame transformation. But when the effective dipolar coupling Hamiltonian 

contain both DQ and ZQ terms at different resonance conditions, we propose to collect all resonance 

terms even though it corresponds to different rf interaction frame transformations. 

To select the size of near  in Eq. (17), we compare the scaling factor of effective dipolar 

coupling Hamiltonian for all specific resonance conditions in Eq. (14). Then, we choose the value for 

near  in Eq. (17) which gives the corresponding highest scaling factor.  

D)  Propagation with the effective Hamiltonian 

Up to this point, we have determined the effective time-independent dipolar coupling 

Hamiltonian in the effective axis frame. In order to get the correct time evolution with the effective 

Hamiltonian in Eq. (17) compared to exact numerical simulations, it is required that the time step for the 

propagation time is given by the greatest common divisor (gcd) between the spinning frequency and 

modulation frequency,  
2

,m rc gcd

    which ensures that c  is always a multiple of m  and  r . In case a 

continuous wave (CW) pulse scheme is analyzed where m  is not defined, we set 2
rc

  .  Furthermore, 

the rotation caused by the effective field frequency 1,I
ˆ

eff
q

eff

qz
I has to be contained in the propagation. 

Hence, at time c we do not have a cyclic time in the effective rf Hamiltonian interaction frame. This 
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term is causing an overall rotation that is not present in the total effective Hamiltonian in Eq. (17) due to 

averaging. Accordingly, the evolution of the density operator is given as  

    
1,I 1,I

1,2 1,2

ˆ ˆ
ˆ ˆ

ˆ ˆ 0
eff eff

eff mix eff mixq qqz qz
q qtot mix tot mix

i I i I
iH iH

mix e e e e
   

    




 
   , (18) 

where nmix c   and n  is an integer. It is noted that before calculating the evolution in Eq. (18), we 

transform back into the conventional rotating frame coordinate system by Euler angle rotations defined 

by taking the ˆ
effqz

I  operator and rotate this into q̂zI  with the opposite rotation direction as described in 

Subsection A) and given by    †ˆ ˆ, , , ,effqz eff eff eff eff eff effqz
I R I R      . 

Simulations and Discussion 

We will in this section show that the proposed theoretical framework can explain how isotropic 

chemical shift influences the performance for dipolar recoupling sequences. We have chosen to analyze 

the symmetry-based dipolar recoupling sequences 1
27C  [14] and POST- 1

27C  [15]. A schematic 

representation for the C7 symmetry-based pulse sequence is presented in Fig. 3A. The sequences consist 

of a basic element that is repeated seven times with an incremental phase for each basic element by 

2/7. The seven basic elements are timed such that the overall sequence takes two rotor periods and the 

rf field strength is constant throughout the sequence fulfilling 1 7 r  . The basic element for the 

original 1
27C  sequence consists of two pulses which for the first element are phase-alternated between x 

and –x phase and where each pulse gives rise to an overall 2 -rotation (lower left in Fig. 3A). The 

basic element for the POST- 1
27C  sequence consists of three pulses that are phase-alternated between x, 

–x and x, respectively. The flip angle for each pulse is adjusted such that the first pulse gives a 1
2 -

rotation, the second pulse a 2 -rotation, and the third pulse a 3
2 -rotation (lower right in Fig. 3A).    

For the analysis of the sequences, we start by determining the effective axis of rotation ˆ
effqz

I  for 

the entire pulse element (for both sequences, the period of the (POST-)C7 element is two rotor periods 
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which gives 1
1 2 2m m r    ) and the corresponding effective field frequency 1,Iq

eff  for each spin q, 

separately. To differentiate between DQ and ZQ resonance conditions, we always define the positive 

operator ˆ
effqz

I  whereas the scaling 1,Iq

eff  can be either positive or negative for the respective nuclei. In 

Fig. 3B (for 1
27C ) and 3C (for POST- 1

27C ), the sum of the two independent projections of the effective 

field Hamiltonian
 
onto the x, y and z axis of the rotating frame coordinate system as a function of 

chemical-shift offset is presented. For the size, we have used the short notation given by 

1 2 1 21 1,I 2 1,I 1,I 1,I1 2
ˆ ˆ ˆ ˆ / 2 / 2eff eff

eff eff eff eff
j jz z

I I I I        . The calculations represent conditions of 5.0 kHz 

MAS and rf field strength 1 / 2 35    kHz. In the cases presented, it turns out that the effective axis are 

either undefined (for cyclic rotation for the respectively single-spin operators) or almost along the 

conventional z-axis with operator q̂zI  (for not cyclic rotation for the respectively single-spin operators). 

The reason for summing and not subtracting the two effective field frequencies is that for both C7 

variants, the effective first-order dipolar coupling Hamiltonian is given by DQ operators [14, 15]. 

Hence, the sum of the effective field frequencies will interfere with the recoupled dipolar Hamiltonian 

with  
1 21,I 1,I

ˆ
eff

eff eff DQ

z
I   in a similar way as presented in Fig. 2B and by Eq. (17).      

Figure 3 

Looking at the z-component in Figs. 3B and 3C, it is obvious that the influence of isotropic 

chemical-shift offset for the POST element is significantly minimized relative to the original 1
27C  

sequence. Over the calculated chemical-shift offset region, the absolute size 
1 21,I 1,I / 2eff eff    is below 

140 Hz for the POST- 1
27C  sequence whereas for the 1

27C  sequence the value is getting higher than 600 

Hz.  

We have determined the total effective Hamiltonian in Eq. (17) under the conditions given in 

Figs. 3B and 3C. This is done by initially calculating the effective dipolar Hamiltonian in Eq. (14) by 
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summing over all allowed resonance conditions in Eq. (15) and therefore the total effective dipolar 

coupling Hamiltonian will contain both DQ and ZQ terms. As mentioned, we decide a threshold max  

for which the resonance conditions are fulfilled. For the threshold, we have used the size of the dipolar 

coupling constant which in the following is set to 
1 2

/ 2 1.0I Ib    kHz. The resonance conditions for both 

1
27C   sequences must fulfill 

  
1 2

1 1
0 1 2 1 1,I 2 1,I max2 2

eff eff
rn k k l l          .  (19) 

If the rf pulse is applied on-resonance ( I 0q

iso   Hz) for both spins, the effective field frequencies 

1,I
eff

q  will be zero as the effective rf Hamiltonian in Eq. (5) is cyclic. In this case Eq. (17) will only be 

fulfilled when 1 1
0 1 22 2 0n k k   . The values for 1k  and 2k  can be any integer number according to Eq. 

(8) but for practical reasons, we also set a threshold for largest absolute allowed values for these. We 

have defined the threshold by the size of the corresponding Fourier coefficients, 
, ,eff

qk j j
a . We have only 

allowed values for 1k  and 2k  for which 3

, ,
10eff

qk j j
a  . This threshold gives values for 1k  and 2k  up to 

25  for the analyzed sequences. This sum of resonance conditions can be avoided (as discussed in the 

theory section), by combining dimensions with commensurate frequencies, i.e., in our case by 

combining the two frequencies 1 2m m  . This will automatically reduce the number of resonance 

conditions, but as mentioned, new Fourier coefficients need to be calculated. 

At this point, it is easy to see that the total effective Hamiltonian in Eq. (17) is given by 

    0 1 2

1 2 1 2
1 1

0 1 22 2

, , ,0,01

0

ˆ ˆ ˆ n k k
tot I I I I

n k k

H H H
  

   
  . (20) 

When the rf pulse is applied off-resonance ( I 0q

iso   Hz) for both spins, the effective field 

frequencies 1,I
eff

q  will be finite and the effective rf Hamiltonians in Eq. (5) are not cyclic for the 
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individual spins. In this case Eq. (19) can be fulfilled by both DQ (when 1 2l l ) and ZQ (when 1 2l l  ) 

resonance conditions. However, the scaling of the effective dipolar coupling Hamiltonian is much larger 

for the DQ than for ZQ resonance conditions implying that 
1 21,I 1,I

eff eff
near      as presented in Figs. 3B 

and 3C. It is also seen that 
1 21,I 1,I max

eff eff
r       over the entire offset grid. These considerations 

imply that the total effective Hamiltonian in Eq. (17) is given by 

  0 1 2 1 2

1 2
1 1

0 1 2 1 22 2

1
, , , ,

0 , 1

ˆ ˆ ˆ
eff

n k k l l DQ
tot I I near z

n k k l l

H H I
   

    
   (21) 

If the rf pulse is applied off-resonance ( 1I 0iso   Hz) for spin 1̂I  and on-resonance ( 2I 0iso   Hz) for spin 

2̂I  or visa versa, then the expression for the total effective Hamiltonian is given by Eq. (21) but 2l  is 

limited to only taking the value zero.  

Figure 4 

To verify if the calculated total effective time-independent Hamiltonian is correct, we compare 

in Fig. 4 the propagation under the effective Hamiltonian with the direct-propagation numerical 

SIMPSON simulations [34, 35]. In Figs. 4A and 4C,  the simulated transfer efficiencies are shown for a 

two-spin system as function of chemical-shift offset for both the original 1
27C  sequence (Fig. 4A) and 

for POST- 1
27C  sequence (Fig. 4C). The simulations were performed using the calculated effective 

Hamiltonian and propagating according to Eq. (24) with a total mixing time of 3.2 ms (M=8). Powder 

averaging using 11 CR and 320 CRCR REPULSION [36] crystallite angles were used with CR 

denoting the transformation from the crystal axis frame to the rotor axis frame. By comparing Figs. 3B 

with 4A as well as Figs. 3C with 4C, it can be seen that the overall transfer performance is highly 

dependent on the effective field frequencies 1,Iq

eff . This implies that the information content in the 

effective axes and the effective field frequencies can be used to judge the transfer efficiencies as 
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function of chemical shift offset. Thus, minimizing variations in the effective field frequencies by using 

optimization procedures on quaternions may potentially be used to compensate for large chemical-shift 

variations. This is due to the fact that the resonance conditions are dependent on only up to two 

frequencies for each spin ( m  and 1,Iq

eff ) where only 1,Iq

eff  changes when the offset is varied. Also, the 

calculation of 1,Iq

eff  is much faster than performing a full direct propagation using the time-dependent 

Hamiltonian in Eq. (1).   

In Figs. 4B and 4D, we have simulated the transfer efficiencies by direct-propagation using the 

numerical SIMPSON software package. The results are presented using the same settings as in Fig. 4A 

and 4C, respectively. By comparing the simulations in Fig. 4A with 4B and Fig. 4C with 4D, it can be 

seen that the proposed theoretical model is indeed representing the full spin-dynamics with greater the 

99.5% accuracy. This illustrates that the determined first-order effective Hamiltonian found by the 

proposed theoretical description mimics the total time-dependent Hamiltonian in Eq. (1) to a really good 

approximation.  

Conclusions 

In conclusion, we have presented a general theoretical description of how to handle isotropic 

chemical shift effects for dipolar recoupling experiments under magic-angle-spinning. By considering 

the isotropic chemical shift and the rf field together, the influence of chemical shift offset can directly be 

ascribed to a change in the dipolar resonance conditions for the first-order effective Hamiltonian. 

Additionally, we have shown that the low transfer efficiencies encountered under near-resonance 

conditions can be explained by an effective field along the effective axis in the related zero/double-

quantum subspace. We have verified the proposed model and shown that the found first-order effective 

Hamiltonian for two versions of the symmetry-based pulse sequence 1
27C  gives same numerical results 

as found by numerical simulations using the SIMPSON software package. From the proposed 

description, we have shown that by representing the time-dependencies of single-spin operators with up 

to two frequencies for each spin ( m  and 1,Iq

eff ), we can obtain useful information to judge the overall 
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performance of any pulse sequence. Moreover, it is shown that only 1,Iq

eff  changes, when the offset is 

varied and affects the transfer efficiency. This insight may be exploited for faster optimizations for 

better offset compensation. 

Supplementary Material 

See supplementary material for details on how to determine the time-dependency of a given 

single-spin operator in the interaction frame of the effective rf field Hamiltonian. 
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Figure 1 

  

Fig. 1.  (A) Schematic representation of a pulse element consisting of four pulses which is repeated M 

times. All pulses have the same field strength 1  and duration p . (B) Single-spin subspace for the 

time-evolution of interaction frame single spin operator  ˆ ˆ0z zI I
 using the conditions for the effective 

rf Hamiltonian given by 1I 5.0iso   kHz with 1 / 2 9.0    kHz and 100p   s. The red dots represent 

the density operator as function of M with the red axis illustrating the effective axis of rotation, êffI . (C) 

Shows the conventional single-spin subspace (black coordinate system) and the subspace (red and green 

lines) in which the effective axis of rotation for the pulse sequence is aligned with the new z-axis (red 

line).  
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Figure 2 

  

Fig. 2. The zero-/double-quantum subspace for the effective Hamiltonian in the effective axis 

coordinate system with the red arrows representing the strength of the effective dipolar coupling 

Hamiltonian for different crystal angles. In (A) the resonance condition in Eq. (13) is fulfilled whereas 

in (B) the resonance condition is only close to be fulfilled according to Eq. (15). The green arrow 

indicates the amount that is added to the effective Hamiltonian to fulfill a resonance condition. This 

term will be along the z-axis in the effective axis zero-/double-quantum subspace.   
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Figure 3 

  

Fig. 3.  (A) Schematic representation of the symmetry-based 1
27C   pulse sequence using either the 

original element consisting for the first element of two 2  rotations with opposite phases (lower left) or 

the POST element consisting of a 2
  rotation along the x-axis followed by 2  rotation along –x and 

finally a 3
2
  rotation along the x-axis (lower right). (B) and (C) shows the magnitude of the sum of the 

effective frequencies 
1 21,I 1,I / 2eff eff   for the conventional rotating frame coordinate system for x- (left), 

y- (middle) and z-axis (right) as a function of I1 and I2-spin chemical shift offsets for 1
27C   pulse 

sequence (B) and the POST- 1
27C   pulse sequence (C). The calculations were done for / 2 5.0r    kHz 

MAS with a rf field strength fulfilling 1 / 2 35    kHz. 
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Figure 4 

  

Fig. 4.  Numerical simulations for the 1 2
ˆ ˆ

z zI I  transfer efficiencies as a function of 1̂I  and 2̂I -spin 

chemical shift offsets for the (A, B) 1
27C  and (C, D) and POST- 1

27C   pulse sequences. For (A) and (C) 

the calculations were done using the effective Hamiltonian given in Eq. (22) and performing the 

propagation according to Eq. (23).  For (B) and (D) the calculations were done using the SIMPSON 

software package [34, 35]. All simulations were done for / 2 5.0r    kHz MAS with a total mixing 

time set to 3.2 ms (M=8) with rf field strength fulfilling 1 / 2 35    kHz. The dipolar coupling 

constant was set to 
1 2

/ 2 1.0I Ib    kHz and powder averaging using 11 CR and 320 CRCR 

REPULSION [36] crystallite angles with CR denoting the transformation from the crystal axis frame to 

the rotor axis frame.  
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