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Abstract uncertainties of climate projections are routinely assessed by considering simulations from
different models. Observations are used to evaluate models, yet there is a debate about whether and how
to explicitly weight model projections by agreement with observations. Here we present a straightforward
weighting scheme that accounts both for the large differences in model performance and for model
interdependencies, and we test reliability in a perfect model setup. We provide weighted multimodel
projections of Arctic sea ice and temperature as a case study to demonstrate that, for some questions at least,
it is meaningless to treat all models equally. The constrained ensemble shows reduced spread and a more
rapid sea ice decline than the unweighted ensemble. We argue that the growing number of models with
different characteristics and considerable interdependence finally justifies abandoning strict model
democracy, and we provide guidance on when and how this can be achieved robustly.

1. Motivation

Our ability to predict climate change is riddled with uncertainties: different scenarios of societal and techno-
logical development, imperfect models, and natural variability are the main reasons that future projections
cannot be certain and deterministic [Knutti, 2008; Hawkins and Sutton, 2009; Knutti and Sedldéek, 2012].
Scenario uncertainty is accounted for by making projections (rather than predictions) conditional on an emis-
sion scenario. Natural variability is an inherent component of any evolution of climate and is nearly irreduci-
ble for lead times greater than 5-10years [Deser et al., 2012]. For projections, we are left mostly with
uncertainty arising from our incomplete understanding of nature and its representation in models. For
large-scale long-term projections, this is often the dominant source of uncertainty. A common approach to
quantify it is to consider multiple models from different institutions running common experiments, such as
in the Coupled Model Intercomparison Projects (CMIP) [Eyring et al., 2016], but each group making different
but plausible choices regarding which processes are included and how they are represented [Parker, 2006;
Tebaldi and Knutti, 2007; Knutti, 2008; Sanderson and Knutti, 2012]. The prevailing approach for dealing with
multimodel ensemble results is model democracy [Knutti, 2010]. Often based on a lack of convincing alterna-
tives, this “one model one vote” essentially assumes that all models are (a) reasonably independent,
(b) equally plausible, and (c) distributed around reality and (d) that the range of their projections is represen-
tative of what we believe is the uncertainty in the projected quantity.

Strictly speaking, none of the four conditions is fulfilled by model democracy. On (a), many models duplicate
ideas, or even use large parts of the code of others, so at best are providing little additional information and at
worst are biasing the result [Annan and Hargreaves, 2011; Masson and Knutti, 2011a; Pennell and Reichler,
2011; Knutti et al., 2013]. On (b), some models are worse than others in how well they represent the observed
mean climate and trends [Gleckler et al., 2008; Reichler and Kim, 2008; Knutti et al., 2013]. On (c) models have
common structural limitations so the ensemble as a whole may be biased. And on (d), our suite of models
may be either too broad if we have demonstrably unrealistic models included (e.g., one of Venus) or too nar-
row if all models are missing the same processes, or make similar approximations. We do not know which of
the two is correct, and this may differ between variables, regions, and time scales as model performance is
strongly scale and variable dependent [Masson and Knutti, 2011b]. We expect that equal weights for all mod-
els are a suboptimal way of using information, yet this remains common, for the lack of better and easy alter-
natives or consensus on what those are. We provide evidence below that for some applications (and to the
degree that the perfect model test is informative) there are better alternatives.
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The arguments against weighting models are the following: The first is that we do not know how to weight.
While it is easy to define a “model performance metric” (e.g., the difference between simulated and observed
rainfall), we do not know or agree on how to transfer this into a “model quality metric” that is indicative of skill
for a projection [Knutti et al., 2010b], and eventually into weights. The situation is more challenging than, for
example, for weather forecasts where we can quantify skill by repeated verification. Confidence in climate
projections must derive from developers’ understanding of how the climate system works, whether the rele-
vant processes are captured in the model or how that manifests itself in the simulation. That degree of con-
fidence is partly subjective. The second argument often made against weighting is robustness. Betting on a
few or only one model is risky and may lead to a biased or overconfident result [Weigel et al., 2010], but that is
only a major issue if the number of models is small or if most of the weight is put on a few models and when
the weight is unrelated to the projected variable. Finally, there is a political element in that eliminating mod-
els from an ensembile is judged by some to be inappropriate in international assessments, or there is no con-
sensus on how to do it.

A way out, at least partially, is to reframe the competition of “which model is the best” to “which models are
adequate for predicting X" [Parker, 2009]. The former is an ill-posed question; there is no best model without
defining what “better” means. But it is easier to define criteria for a model to be better or worse for a particular
purpose. If we define weights for predicting X or Y, then the situation becomes easier both scientifically and
politically. One model may get more weight at predicting X, and another one at predicting Y, which is natural
as different institutions focus on different questions. A model would only be downweighted for all purposes
if, for example, it strongly violates conservation of water or energy. Defining weights for predicting X is also
easier because we have an idea of which processes are important for X. In some cases, the ensemble can be
used to find relationships between observable aspects of mean climate, variability, or trends and the predic-
tion of X, or some feedbacks affecting it. This idea of “emergent constraints” is now explored widely.

Methods beyond democracy include statistical methods that introduce some statistical metamodel, e.g.,
based on regression between observables and predictions using emergent constraints [Hall and Qu,
2006; Boé et al, 2009a; Huber et al, 2011; Mahlstein and Knutti, 2012; Cox et al., 2013; Fasullo et al.,
2015], interpolation in a model space [Sanderson et al., 2015b], Bayesian methods [e.g. Tebaldi et al.,
2004], or combinations thereof. The results are often relatively independent of the underlying sample,
and in some cases extrapolation beyond the model range and probabilistic estimates are possible.
Some studies have assumed a problematic “truth plus error” paradigm, i.e., that models are independent
and distributed around reality (for an in-depth discussion see Knutti et al. [2010b], Annan and Hargreaves
[2011], and Sanderson and Knutti [2012]), which leads to overly narrow results for a large number of mod-
els [Knutti et al, 2010a]. The emergent constraints may be overestimated if all models have structurally
similar problems or the ensemble is too small [Caldwell et al., 2014]. Conservation of quantities and con-
sistency across time, space, and across variables is often lost for multivariate results. Finally, the technical
and methodological hurdles have restricted the use of some methods.

An alternative to regressions across models is picking subsets or weighting individual model simulations. This
can provide multivariate data sets that are consistent across variables, time, and space (to the degree that the
model reflects reality) but allows no straightforward extrapolation beyond the model range. Most methods in
this category consider performance but ignore model dependence, and those which do are technically chal-
lenging [Abramowitz and Bishop, 2015; Sanderson et al., 2015a].

We argue that weighting schemes that consider model performance and interdependence are required for at
least five reasons. First, for some regions and variables the model spread in the present day climatology is
massive, and thereby biases in some models are so large that model democracy is difficult to justify. For
example, the output of a model in which Arctic sea ice has already disappeared today cannot be used directly
to predict future Arctic sea ice (although its sensitivity of sea ice to temperature could be used potentially,
which would be another way of weighting by an emergent constraint) [Boé et al., 2009b; Mahlstein and
Knutti, 2012; Notz and Stroeve, 2016]. Second, in cases where processes are sensitive to the base state
(e.g., temperature determining the sea ice edge or temperature variability change depending nonlinearly
on soil moisture), working with projected anomalies relative to today is problematic, and scaling methods
and bias correction may be unfeasible. Third, in some cases there are emergent constraints that are clearly
relevant for model evaluation and that can improve projections (as in the sea ice example discussed here),

KNUTTI ET AL.

MODEL PROJECTION WEIGHTING SCHEME 2



@AG U Geophysical Research Letters 10.1002/2016GL072012

so it would be strange not to use them. Fourth, large initial condition ensembles (or other types of simula-
tions) are hard to combine with single runs from other models. And fifth, model dependence gets increas-
ingly relevant with increasing replication of code across institutions, models being run at different
resolutions, used as climate versus Earth system models, etc. [Knutti et al., 2013]. This approach of sharing
ideas and code is natural to avoid duplication of efforts, but the dependence has to be considered in
the interpretation.

2. Method

The basic idea of the method presented here is simple: models that agree poorly with observations for a
selected set of diagnostics get less weight and models that largely duplicate existing models also get less
weight. The proposed scheme therefore extends previous approaches on weighting multimodel projections
of for example, sea ice [Massonnet et al., 2012] or stratospheric ozone [Waugh and Eyring, 2008] by addition-
ally considering model interdependence. Note that this method is limited to weighting maps or time series
and does not straightforwardly apply to other methods for making projections.

Any weighting scheme inevitably requires making important and subjective choices on the distance metric,
its conversion into weight, diagnostics and observations (including their uncertainties) to be used, and the
relative importance of the different diagnostics. Some of these choices are not straightforward at all and need
to be defined and assessed specifically for each application.

The weighting first requires defining a distance metric D; of model i to observations, and Sy, the distance
metric between model i and model j, and a relationship to convert those into a weight. Both D; and §;; are
evaluated in our example as root-mean-square differences, but other metrics are also possible. For M models
in the ensemble, the single model weight w; for model i is defined as follows:

G

2

wi=e/|1+3Me | (1)

The constants op and o5 determine how strongly the model performance and similarity are weighted and are
discussed below. The weights are normalized so that their sum equals one. The interpretation of the weight-
ing is straightforward, based on and further explained by Sanderson et al. [2015a, equations (10)-(16)]. The
scheme here is identical except that no empirical orthogonal functions are used, and weights are used
directly rather than for interpolation in a model space or producing ensemble subsets. The numerator repre-
sents model skill by using a Gaussian weighting where the weight decreases exponentially the further away a
model is from observations. The denominator is the “effective repetition of a model” [Sanderson et al., 2015al
and is intended to account for model interdependency. If a model has no close neighbors, then all 5;; (i #j) are
large, the denominator is approximately one and has no effect. If two models i and j are identical, then S;=0,
the denominator equals two, so each model gets half the weight.

This scheme fulfills the two main requirements: a model that bears no similarity to Earth (D; being very large)
gets no weight and adding a model that is identical to one already there does not change the result. This
scheme also deals naturally with multiple initial condition ensembles; all members can be used, even if not
all models provide the same number of ensembles, and the method effectively treats initial condition mem-
bers as duplicate models and downweights them accordingly. The older CMIP3 models can be included as
well [Rauser et al., 2015] if the scenario is sufficiently similar and if they are worse than newer models they
simply get less weight. Ensemble spread is calculated as a weighted standard deviation.

Second, the metrics D; and S; require a choice of the diagnostics and variables that are relevant for the pro-
jection of a certain variable. When several diagnostics are used, they are normalized here by the median dis-
tance across all models/members before adding them to the total distance, so that each diagnostic gets
about the same weight. But many metrics and ways to combine variables are possible, and choices can be
made either based on expert judgment about relevant processes, on emergent relationship across models,
or multiple diagnostic ensemble regression methods [Waugh and Eyring, 2008; Karpechko et al., 2013;
Sanderson et al., 2015b; Wenzel et al., 2016a]. Observational uncertainty, significance of differences, and sen-
sitivities to the choice of data sets need to be tested. In the example here, the temperature and sea ice biases
in models, however, are far larger than observational uncertainties.
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Figure 1. (a) Arctic (60-90°N) September surface air temperature and (b)
Arctic September sea ice extent in all CMIP3/5 simulations. Yellow,
orange, and red indicate those that get >0.5%, >1%, and >5% weight,
respectively, from weighting with equation (1). Observations (National
Centers for Environmental Prediction, NCEP) are shown in blue. (c) Mean
and 5-95% range for no weighting (black line and grey band) and
weighting (red line and band). Colored dots near 2050 and 2100 show
2046-2055 and 2090-2099 average sea ice extent using (from left to right)
the following metrics: (1) none (unweighted), (2) climatological mean
(1980-2013) September sea ice extent, (3) September sea ice extent trend
1980-2013, (4) climatology of monthly surface temperature (1980-2013),
(5) interannual variability of monthly surface temperature, and (6) all 2-5.

The choice of op and s determines
how strongly the model performance
and similarity are weighted. A large op
effectively converges to model democ-
racy, whereas a small op puts the
weight on only a few models; o5 deter-
mines a typical distance by which a
model would be considered similar to
another one. The choice of those
values is discussed along with the
results. A more formal way of treating
dependence would be desirable, but
the conceptual ideas being discussed
are not applicable in an obvious
way [Annan and Hargreaves, 2016].
Dependence and performance are
treated independently here, and one
concern may be that two independent
models converging to reality become
more similar in our definition of S and
thus might be penalized unjustly. A
similarity metric based on correlation
[Watterson, 1996] would eliminate this
but would lose information on the
absolute distance. For the metrics con-
sidered here, the typical distance to
observation is large compared to the
distance between duplicate models,
and the results are rather insensitive
to how strongly model dependence is
weighted. That should alleviate con-
cerns, but these questions will require
further conceptual work and testing in
various applications.

3. Application to Arctic Sea
Ice and Temperature
Projections

To demonstrate the application and
skill of the proposed method, we con-
sider projections of Arctic September
temperature and sea ice. Figures 1a
and 1b show time series of absolute
Arctic mean temperature and total
sea ice extent for each CMIP5 simula-
tion (historical and Representative
Concentration Pathway (RCP4.5), all
initial condition members), respec-
tively. CMIP3 simulations with the
SRES B1 scenario are also included.
While not identical, B1 and RCP4.5 are
similar enough to be analyzed
jointly [Knutti and Sedldcek, 2012].
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Weights are assigned based on the above equation (1). The default performance and similarity metric
combines distances in the following four diagnostics: the climatological mean hemispheric mean
September Arctic sea ice extent (1980-2013), its trend over the same period, gridded climatological mean
surface air temperature for each month, and climatological mean gridded interannual variability of
monthly surface air temperature. Distances are aggregated as root-mean-square differences. The argu-
ments for using those diagnostics for weighting Arctic temperature and sea ice projections are as follows:
some models have almost no sea ice today, and others have more sea ice in 2100 than observed today,
and therefore, they are not suitable for a projection of future sea ice. Absolute temperature biases are
large in some simulations. There are clear relationships across models between present-day and future
polar amplification [Bracegirdle and Stephenson, 2012, 2013], as well as between past and future sea ice
trends and temperature [Boé et al, 2009b; Mahlistein and Knutti, 2012; Massonnet et al., 2012; Overland
and Wang, 2013; Notz and Stroeve, 2016]. A stronger ice albedo feedback also explains more rapid sea
ice loss in both the past and future, which is a plausible physical explanation for those relationships.
But since sea ice extent depends nonlinearly on absolute temperature (and vice versa) once all sea ice
has disappeared, most simple scaling or bias correction methods based on anomalies fail, while weighting
produces a projection that is consistent with and calibrated by past observations. In addition to matching
the mean and trend in sea ice, we also evaluate the seasonal and spatial patterns of temperature and its
variability to ensure the sea ice match is not by chance but a result of a decent representation of the
overall Arctic climate.

Those simulations with nonnegligible weights are shown in colors in Figures 1a and 1b, with yellow to red
indicating less to more weight. The red shaded band in Figure 1c shows the 5-95% confidence interval based
on the weighted ensemble. The weighted projection points to near ice-free September conditions by 2100
for RCP4.5, with a very likely range of zero to about 4 x 10° km?. That result is more consistent with, and better
constrained by, the current extent and past trends of sea ice than the grey range of the full ensemble which
is inconclusive.

The results are robust to picking different individual metrics from the four diagnostics, in that the calibrated
projections always show either no substantial difference or a tendency toward faster sea ice decline than the
unweighted case (see colored dots for different metrics in Figure 1c), and a strong reduction in spread (not
shown). The calibrated projections demonstrate an improved agreement in the present-day model mean sur-
face temperature (Figure 2a). They also project more warming over the central Arctic (up to 2°C) compared to
the unweighted case (Figure 2b), and a faster sea ice decline, consistent with other calibrated estimates [Boé
et al., 2009b; Mahlstein and Knutti, 2012; Massonnet et al., 2012; Overland and Wang, 2013].

Another approach to evaluate the method is a perfect model setup (or cross validation or pseudoreality)
[Karpechko et al., 2013; Wenzel et al.,, 2016a], where each model is sequentially treated as “truth” and the
others are weighted to predict its future response. Figure 3a shows an example of the high correlation
between predicted and true sea ice extent. Figure 3b shows that this correlation is high for different choices
of op. The dependence on the value of o5 is rather weak relative to op (not shown). Figure 3b would favor a
low value for op to maximize correlation, and indeed, that would further improve the agreement with
observed sea ice trends and result in a more rapid decline of Arctic sea ice. However, correlation only tells
us about the projected best estimate, is insensitive to constant biases, and does not consider the
projection uncertainty.

As an alternative metric, Figure 3c shows the fraction of cases when the actual outcome of the perfect model
test is in the 5-95% range predicted by weighting the other models. That fraction should be around 90%,
which points to a minimum value for o of about 0.37 used here. Any value lower than that leads to overcon-
fident results within the ensemble and therefore is likely to produce overly narrow projections, even if the
agreement in the observational period is good. Note that part of the high correlation may result from multi-
ple initial condition members or duplicate models providing an unrealistically good match with other mod-
els. Using only one model per institution suggests a value for op of 0.57, which would result in future
uncertainty ranges being about 20% wider. But on the other hand, that may be overly conservative, as it
forces the method to weigh less restrictive to capture models with extreme behavior.

There is no objective way to best determine these parameters, but conclusions are robust for different
choices. The comparison of the weighted average and observed evolution (Figure 1c, red and blue lines)
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a) Bias of unweighted model Bias of weighted model

mean temperature (°C) mean temperature (°C)

6 5 4 3 2 -1 0 1 2 3 4 5 6
Temperature bias (°C)

b) Warming in unweighted Warming in weighted
model mean (°C) model mean (°C)

2-15-1-05005 1152 3 4 5 7 9 11

Temperature change (°C)

Figure 2. (a) Unweighted and weighted model mean September surface temperature bias relative to NCEP 2000-2009. The
black line indicates the modeled September sea ice extent; yellow indicates the observed sea ice extent. (b) Unweighted
and weighted model mean September surface warming 2085-2094. The black and blue lines indicate the present-day and
future September sea ice extent, respectively.

thus suggests that part of the recent rapid Arctic warming and observed decrease in sea ice may be due to
natural variability [Kay et al., 2011; Swart et al., 2015; Screen and Francis, 2016]. Simply extrapolating past
trends or calibrating models on a too narrow metric, e.g., only on the observed sea ice trend (Figure 1c,
brown points, case 3), may overestimate the forced trend in this case (or underestimate it if natural
variability had damped the forced response) and be unreliable.

Such perfect model setups can be used to test the skill of the method, flag overfitting to natural variability or
certain data sets, and quantities such as those in Figure 3 can help guiding the choice of parameters and
metrics (in particular, op and o in this case). Such tests will also flag cases where the observations do not pro-
vide a useful constraint on the projection (which is often the case), and the method would then give similar
weights to most models. Remaining questions are whether the choice of parameters or metrics should be
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Figure 3. (a) Correlation between predicted and true September sea
ice extent for each model in a perfect model setup using the standard
values of p=0.37 and o5 =0.5. (b) Dependence of the correlation
shown in Figure 3a on o and (c) fraction of cases when the actual
outcome of the perfect model test is in the 5-95% range predicted by
weighting all other models. Vertical line indicates the minimum value
for op for the fraction to exceed the required 90%.

influenced by the ability of the weighting to
reproduce the results of an instantly dismis-
sible model. Inference from such perfect
model tests is limited if the emergent con-
straint is artificially high due to common
structural model biases, large amounts of
replication, or too few models. While open
questions remain, such perfect model tests
are a necessary test to pass, and we should
have more confidence in the results with
them than without them.

4. Conclusions

We presented a weighting scheme for mul-
timodel climate model projections that
considers both model performance and
interdependence and illustrated its applica-
tion to Arctic climate. We highlight several
open questions but argue that in cases
where obvious model performance criteria
exist, there are schemes to weight model
projections that are very likely better than
treating all models equally, for both pre-
dicting a model mean and for estimating
an uncertainty. A weighted climate model
ensemble can be used as input for an
impact model, the only difference is a sin-
gle weight attached to each simulation,
although the weights will be application
specific. The scheme proposed naturally
deals with multiple initial condition ensem-
ble members and downweights obvious
duplicate models. Giving more weight to
better or newer models does not necessa-
rily reduce the uncertainty in a projection
[Knutti and Sedldcek, 2012], but it increases
our confidence when results are based on
models that simulate relevant aspects of
current climate more realistically. Good
agreement with observations is not a proof
that the model is correct [Baumberger
et al, 2017], but bad agreement is a clear
indication for trouble. A much stronger
argument for such a method to work
would be a true out of sample evaluation,
e.g., by using data only up to say 1990 to
constrain projections for 2020 [Allen et al.,
2013]. In practice this is rarely possible
because (a) the data up to 1990 are short,
of too poor quality or has too much varia-
bility, (b) the forecast lead time is too short
for a forced signal to emerge from variabil-
ity, (c) data since 1990 are known and used
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already in model development and evaluation, and (d) one realization is insufficient to assess skill in the
presence of variability.

There are some stumbling blocks in methods such as the one outlined here. The critical issue is the choice of
the diagnostics and their respective weights. They must depend on and be relevant for the quantity X being
projected and can include agreement of trends, patterns, spectra, and information about processes related
to feedbacks, indeed anything that we judge being important for X. While differences to observations are the
most obvious choice, other criteria may also be justified. Substantial problems in conserving energy or mass,
or drift in a control run, could be reasons to downweight or exclude models. Also, the degree of sophistica-
tion with which relevant processes are implemented (e.g., simple bucket-type land hydrology versus sophis-
ticated land surface, hydrology, soil and runoff schemes, or interactive aerosol microphysics and
stratospheric ozone chemistry versus prescribed distributions) can be considered. Methods have been pro-
posed that help deciding which diagnostics matter most to weight a specific projection [Karpechko et al.,
2013; Wenzel et al., 2016a] or that can directly constrain aspects of simulated future Earth system feedback
with observations [e.g., Hall and Qu, 2006; Cox et al., 2013; Sherwood et al., 2014; Wenzel et al., 2014, 2016b].
Other research directions are more sophisticated weighting frameworks, the interpretation and combination
of perturbed physics and multi model ensembles [Knutti et al., 2010b; Annan and Hargreaves, 2011, 2016;
Sanderson and Knutti, 2012], and methods to combine, for example, regional models [Zubler et al., 2015].

The choice of o5 and o5 is important. Pragmatic criteria for o5 are that the weights should be distributed on
more than just a few models. Results that are sensitive to the choice of data sets and its uncertainty, time per-
iod, the set of models or metrics considered indicate too aggressive weighting (too small op).

In any application of model weighting, we argue that authors must (a) show unweighted along with
weighted results, (b) test the robustness of the results toward different diagnostics and metrics to maximize
transparency and comparability across studies, (c) explicitly discuss the choice of diagnostics, including the
physical reasoning that those quantities matter and possibly a formal framework to define the individual
weights, (d) assess the uncertainties in observations, (e) test the sensitivity toward different data sets, time
periods, seasonal versus annual mean values, grid point versus spatially aggregated data, etc., and (f) explore
whether the choice of metric may lead to overconfident results, for example, by using the perfect model
approach. If the results are not robust toward any of those choices, this indicates that weighting may be
too aggressive (overfitting). Even though the method presented here is conceptually simple, its application
requires understanding of the relevant processes and a careful choice of the diagnostics and parameters.
Often both aggressive weighting and democracy are not optimal, and a sweet spot is somewhere in between.
There are still many cases where the relevant diagnostics for a particular projection are largely unclear and
where weighting has to be applied cautiously if at all.

While model performance has been a topic for a long time, the model replication/dependence issue has not
received much attention. Replication will likely get worse in the future: since only few groups can afford to
develop all model components, they are using components of other models, or develop them jointly. The
number of submitted models will likely increase for the next model intercomparison, but the effective num-
ber of independent models might not. Future assessments will have to consider that.

Scientists are often concerned about weighting with inappropriate diagnostics. However, if the diagnostics
used are indeed unrelated to the projection, then all models are essentially assigned random weights, so
the results should not change much, unless the number of models is small [Weigel et al., 2010]. There may
be many cases where we do not know which diagnostics matter, and then reverting back to democracy
may be the safest option. But we should be just as concerned about not weighting when we know that poor
models are biasing our results or when models are replicated many times in the ensemble. The pro-
posed weighting scheme here is just one option, but the main point is that such a scheme can be further
explored for different applications and may improve projections. In the 2007 World Meteorological
Organization/United Nations Environment Programme ozone assessment and the most recent
Intergovernmental Panel on Climate Change assessment reports, total column ozone, sea ice, and near-term
temperature trends were among the first projections that explicitly used observational constraints. Future
research will help to extend that list to other cases where we can go beyond model democracy or arbitrary
weighting. This will provide projections that are more consistent with observed present-day climate and past
trends and therefore will be likely more reliable.
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