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3Royal Observatory of Belgium, Circular Avenue 3, 1180 Brussels, Belgium

Received: 3 January 2008 – Published in Atmos. Chem. Phys. Discuss.: 28 February 2008
Revised: 15 May 2008 – Accepted: 19 May 2008 – Published: 12 June 2008

Abstract. The LYRA instrument onboard ESA PROBA2
satellite will provide 6-hourly solar irradiance at the Lyman-
alpha (121.6 nm) and the Herzberg continuum (∼200–
220 nm wavelength range). Because the nowcasting of the
neutral and ionic state of the middle atmosphere requires the
solar irradiance for the wide spectral range (120–680 nm) we
have developed the statistical tool for the reconstruction of
the full spectrum from the LYRA measurements. The ac-
curacy of the reconstructed irradiance has been evaluated
with 1-D transient radiative-convective model with neutral
and ion chemistry using the daily solar spectral irradiance
measured with SUSIM and SOLSTICE instruments onboard
UARS satellite. We compared the results of transient 1-year
long model simulations for 2000 driven by the observed and
reconstructed solar irradiance and showed that the recon-
struction of the full spectrum using linear regression equation
based on the solar irradiance in two LYRA channels can be
successfully used for nowcasting of the middle atmosphere.
We have also identified conditions when the proposed ap-
proach does not yield spectral reconstruction with sufficient
accuracy.

1 Introduction

The nowcasting and short-term forecasting of the space
weather driven by the different observational data gained re-
cently a lot of attention, because the Solar activity variations
are able to induce substantial changes in the Earth environ-
ment, which turn out to be important for the space operations
(Wilkinson, 1994), radio-wave propagation, GPS function-
ing and many other aspects of the mankind activity (Jansen
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et al., 2000). Among other elements of the space weather it
is of interest to understand and predict the response of the
neutral and charged species in the middle atmosphere to the
variability of the solar activity. An important aspect of this
issue is an evaluation and prediction of the response of the
middle atmosphere to the solar ultraviolet irradiance vari-
ability, which defines the behavior of the species and tem-
perature in the middle atmosphere via the perturbation of
the photolysis, photoionization and heating rates (Brasseur
and Solomon, 2005). On the other hand the response of the
middle atmosphere to the solar variability can be modulated
by complicated non-linear dynamics, advective and turbulent
transport of heat and species. Therefore, nowcasting of the
middle atmosphere state requires application of appropriate
models and detailed knowledge of the solar spectral irradi-
ance in real time.

High quality solar UV irradiance observation data are
available from a variety of past (Floyd et al., 1998; Rottman
et al., 1993) and ongoing (Rottman et al., 2006) satel-
lite experiments. The solar irradiance measurements by
the SORCE experiment (http://earthobservatory.nasa.gov/
Library/SORCE), if available in real-time, could provide a
solid basis for the nowcasting of the neutral and ion com-
position of the stratosphere and mesosphere. More near
real-time solar irradiance data will be available in the fu-
ture. The LYRA instrument onboard PROBA-2 satellite will
provide the solar irradiance for several wavelengths impor-
tant for the middle atmosphere in real time (Hochedez et al.,
2006). LYRA will specifically monitor the solar irradiation
in four wavelength bands that are essential for the Sun-Earth
connection: Lyman-alpha (115–125 nm), Herzberg (200–
220 nm), Zirconium (1–20 nm) and Aluminium (17–70 nm)
including He II at 30.4 nm. It will be the first space as-
sessment of the pioneering UV detectors from the BOLD
program (http://bold.oma.be), which make use of wide-
band-gap materials instead of silicon. Another instrument

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/
http://earthobservatory.nasa.gov/Library/SORCE
http://earthobservatory.nasa.gov/Library/SORCE
http://bold.oma.be


2966 T. Egorova et al.: Reconstruction of the solar UV irradiance from LYRA data

PREMOS on the French satellite PICARD (Thuillier et al.,
2006) will monitor the solar irradiance in two UV channels at
270 nm and in the Herzberg band, and in one visual channel
at 535 nm and one near IR channel at 782 nm. The LYRA and
PREMOS observations can be used as input data for global
climate-chemistry-ionosphere models in order to evaluate the
response of the terrestrial atmosphere to the solar UV irradi-
ance variability. These results are indispensable for space
whether and global climate applications.

However, while it is necessary to have full solar spectrum
to drive a nowcasting, the observational data by LYRA and
PREMOS cover only several spectral intervals. Therefore,
to apply LYRA and PREMOS data it is necessary to recon-
struct the solar UV spectrum. The attempts to reconstruct
solar irradiance have been made by several groups (e.g. by
Krivova et al., 2006; Dudok de Wit et al., 2005) on the ba-
sis of statistical approaches. Krivova et al. (2006) applied
for the solar UV irradiance reconstruction a semi-empirical
model assuming all irradiance variations to be due to the evo-
lution of the solar surface magnetic features and showed that
this approach performs well for the wavelengths longer than
∼220 nm. For the shorter wavelengths Krivova et al. (2006)
used regression equations based on the correlation with the
measured solar UV irradiance at 220–240 nm. Dudok de Wit
et al. (2005) used statistical approach based on the singu-
lar value decomposition analysis and showed that all spec-
tral lines can be conveniently represented on a 2-D map ac-
cording to the similarities in their temporal evolution. They
showed that a subset of 5 to 8 of these lines is sufficient
for reconstructing the spectrum with a relative error below
0.25%. These efforts suggested that the full spectrum could
be successfully retrieved from the limited number of spectral
channels.

The main goal of the paper is to show that the solar UV
irradiance can be reconstructed with a correlation better than
0.8 and root mean square (RMS) difference smaller than 40%
from the LYRA measurements using regression analysis. Be-
cause LYRA is not yet operational we use UARS SUSIM
and SOLSTICE daily solar UV irradiance for the year 2000.
From these data it is possible to calculate the solar irradiance
for the LYRA channels and apply it to reconstruct the full
solar UV spectrum using linear regression technique, which
can be then evaluated against the reference solar UV spec-
trum. Because we are interested mostly in the accuracy of
the final product (i.e., state of the middle atmosphere) it is
worthwhile to apply a goal-oriented approach and compare
the temperature and species distributions simulated with a
model driven by the reference and reconstructed solar UV ir-
radiance. This approach allows us to filter out the difference
in the solar irradiance, which is not really important for the
simulation of the atmospheric state. It is also of interest to
look at some other proxies and estimate their potential for
the UV irradiance reconstruction. In case of success they can
be considered as auxiliary input for the regression model. In
this paper we considered the following additional proxies:

solar UV irradiance at 205 nm; total solar irradiance; solar
radio flux at 10.7 cm; neutron monitor data.

The structure of the paper is the following. The applied
1-D model is described in Sect. 2. The results of the regres-
sion analysis are presented in Sect. 3. In Sect. 4 we discuss
the results of the goal-oriented evaluation. Conclusions and
outlook are presented in Sect. 5.

2 Model description

For this study we applied a 1-D radiative-convective
model with interactive photochemistry (RCMP) described
by Rozanov et al. (2002) and extended to take into account
chemistry of the charged species in the middle atmosphere.
The 1-D RCMP consists of the radiation, chemistry, convec-
tive adjustment and vertical diffusion modules. The model
spans the atmosphere from the ground to 100 km. For the
calculation of long wave cooling rates we have applied the
radiation scheme of Frolkis and Rozanov (1992) for the at-
mosphere below 1 hPa and that of Fomichev et al. (1998) to
treat non-LTE processes in the mesosphere. For the calcu-
lation of the photolysis and solar heating rates we use also
modified scheme of Frolkis and Rozanov (1992). The heat-
ing and photolysis rate calculation scheme spans the spectral
region from 120 to 750 nm. The entire spectral region is di-
vided into 73 spectral intervals.

The photochemical part of the model includes neutral and
ion chemistry. It calculates the distribution of 43 neutral
chemical species of the oxygen, nitrogen, hydrogen, car-
bon, chlorine and bromine groups with 173 reactions. The
ion chemistry includes 48 ions (31 Positive and 17 nega-
tive) with 278 reactions. The main positive ions are O+,
O+

2 , N+

2 , NO+, and O+

4 . The main negative ions are O−,
O−

2 , O3−, O−

4 , OH−, CO−

3 , CO−

4 , NO−

2 , NO3−, and HCO−

3 .
It takes into account proton hydrates H+(H2O)n, n=1. . . 7,
NO+ hydrates NO+(H2O)n, n=1,2,3, NO+(H2O)nN2 and
NO+(H2O)nCO2 , where n=1,2. Other ion clusters included
are NO+(N2), NO+(CO2), O+

2 (H2O), and H3O+(OH). The
sources of ionization are galactic cosmic rays (GCR), ener-
getic electron precipitation (EEP), solar radiation, and solar
proton events (SPEs). For GCR we utilize the parameter-
ization by Heaps (1978), for SPEs we use the database of
solar proton fluxes (http://www.geo.fu-berlin.de/en/met/ag/
strat/research/SOLARIS/Inputdata/index.html). The chem-
ical solver utilizes pure implicit iterative Newton-Raphson
scheme (Rozanov et al., 1999). The reaction coefficients
are taken from Sander et al. (2003) for neutral atmosphere
and from Koop (1996) and Kazil (2002) for ionosphere. The
convective adjustment is treated according to Egorova et al.
(1997) and vertical transport of species is calculated using
typical annually mean values of the diffusion coefficient.
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Fig. 1. The correlation of the spectral SUSIM(a,b) and SOLSTICE(c,d) solar irradiance with different proxies: Ly-α (thin line), 205 nm
(dashed line), Herz (thick line) (a, c) and TSI (thick line), F10.7(thin line), and NMD (dashed line) (b, d) for the year 2000.

3 Regression analysis

As the input for the model we use spectral solar irradiance
obtained with SUSIM and SOLSTICE instruments on board
UARS satellite (Woods et al., 1996), which are publicly
available from the NASA ftp site:disc.sci.gsfc.nasa.gov.For
the present study we used daily average data for 2000, which
corresponds to the solar maximum.

First of all we calculated the correlation coefficients be-
tween the observed with SUSIM and SOLSTICE daily solar
spectral UV irradiance for all wavelengths and considered
proxies. Ly-α proxy is the solar irradiance in Lyman-alpha
line (121–122 nm). 205 nm proxy is the solar irradiance in
the 204–205 nm spectral bin. HERZ proxy is the solar irradi-
ance in the Herzberg channel of the LYRA instrument. The
latter has been constructed from the LYRA Herzberg contin-
uum channel taking into account responsivity of LYRA in-
strument detectors provided by I. Dammasch (Royal Obser-
vatory of Belgium). These three proxies have been calculated
from the both SUSIM and SOLSTICE data sets. TSI proxy
is the total solar irradiance from the VIRGO experiment
(ftp://ftp.pmodwrc.ch/pub/virgo/data). F10.7 proxy is the so-
lar radio flux at 10.7 cm (www.ngdc.noaa.gov/stp/SOLAR/
ftpsolarradio.html) and NMD proxy is the neutron monitor
data (www.ngdc.noaa.gov/stp/SOLAR/ftpcosmicrays.html).

All proxies were calculated on daily basis corresponding to
the SUSIM and SOLSTICE measurements. The smoothed
(using boxcar average over 3 nm window) correlation coeffi-
cients are shown in the Fig. 1.

The correlation coefficients for HERZ and 205 nm prox-
ies have almost identical behavior. Their correlation with
SUSIM spectral irradiance is rather low for the wavelength
shorter than∼160 nm, but it becomes quite high (>0.8)
between 160 nm and 250 nm. For the longer wavelengths
the correlation is steadily decreasing. For the SOLSTICE
data the correlations differ from the previous case mainly
below 160 nm. In this area the correlation with 205nm is
much higher (∼0.5) than for SUSIM data. Ly-α proxy also
works much better in this spectral region for SOLSTICE
data, while for longer wavelengths (>170 nm) this proxy has
very week correlation with spectral irradiance. It is also ev-
ident from the Fig. 1 (a, c) that the spectral solar irradiance
in the spectral regions shorter and longer∼260 nm are not
well connected at least for the applied considered daily time
scale. This fact was also discussed previously by Unruh et
al. (2008). The correlation of the solar spectral irradiance
with F10.7 proxy is higher for the short-wave bands (120–
250 nm), but even in this case it hardly reaches 0.5. The TSI
and NMD proxies have almost no correlation with solar ir-
radiance between 120 and 270 nm, while for the rest of the
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UV spectrum TSI has a better correlation (∼0.4) than the
other proxies. In general, the reconstructions of the solar ir-
radiance using Ly-α, 205 nm and HERZ proxies are more
accurate than the reconstructions based on the F10.7 proxy.
According to our analysis the TSI and NMD proxies do not
allow realistic reconstruction of the solar UV irradiance vari-
ability. The best correlation can be reached using a com-
bination of the HERZ and Ly-α proxies. These two quan-
tities will be measured by LYRA instrument and hereafter
this combined proxy will be called LYRA-P. For the LYRA-
P proxy the daily spectral UV irradiance is calculated from
the HERZ proxy for all wavelengths except Ly-α line, where
the measured data are directly applied.

The difference in the results of the correlation analysis
for the spectral range 120–170 nm with UARS SUSIM and
UARS SOLSTICE data sets most probably has instrumen-
tal nature. This issue was discussed in detail by Woods et
al. (1996). They pointed out that the sensor degradation and
instrumental noise can deteriorate the quality of the data in
these spectral intervals, which leads in our case to severely
different correlations for two considered UARS instruments.

Using proxies described above we have reconstructed so-
lar UV irradiance in the spectral interval 120–750 nm re-
quired by the model applying linear regression analysis. We
use the following regression equation for the reconstruction:

F i
λ = Aλ + Bλ × P i (1)

whereF is solar spectral UV irradiance;λ is wavelength;i
is a day number;P is solar irradiance proxy: Ly-α, 205 nm,
HERZ, TSI, F10.7, or NMD;A and B are wavelength de-
pendent regression coefficients. For the combined LYRA-P
proxy we calculate the solar irradiance from Eq. (1) for all
wavelengths using LYRA Herzberg channel irradiance asP,
except Ly-α line, where the observed values are used.

4 Accuracy evaluation

From the correlation analysis presented in the Sect. 3 it
is hard to conclude how accurate would be the simulation
of the atmospheric state driven by the reconstructed solar
irradiance, because the solar irradiance at different wave-
lengths has different influence on the atmospheric state (e.g.,
Rozanov et al., 2002) and it could well be that a substantial
error in the solar irradiance would not affect some of the sim-
ulated atmospheric quantities. Therefore, the accuracy of the
reconstruction should be evaluated by the comparison of the
atmospheric state variability simulated with a model driven
by the observed and reconstructed daily spectral solar UV
irradiance. We performed several 1-year long runs with the
1-D RCMP described in Sect. 2. Two reference runs were
driven by the observed solar irradiance from UARS SUSIM
and UARS SOLSTICE instruments. The other twelve runs
have been performed with the solar irradiance reconstructed

from different proxies: Ly-α, 205 nm, LYRA-P, TSI, F10.7,
and NMD for the both instruments.

To characterize the accuracy of the reconstruction we cal-
culated the correlation coefficients and relative RMS differ-
ences between the daily temperature, ozone, hydroxyl and
total positive ions concentration simulated with the observed
and reconstructed solar spectral UV irradiance. The analysis
of these quantities shows which proxy is the most accurate
for any particular altitude. The vertical profiles of the corre-
lation coefficient and RMS differences for the total positive
ions concentration are shown in Fig. 2. The ionization rates
for our model are defined mostly by the photoionization of
NO and by galactic cosmic rays (GCR). The photoioniza-
tion of NO occurs by the soft solar UV irradiance (Brasseur
and Solomon, 2005), therefore its concentration in the meso-
sphere should be well defined there by the solar irradiance in
Lyman-α. In the stratosphere, where the influence of GCR is
noticeable the total number of positive ions also depends on
the atmospheric temperature and neutral species. Due to the
former process (NO photoionization) the accuracy of the so-
lar irradiance reconstruction using Ly-α and LYRA-P proxies
is very good in the mesosphere above 60 km. The correlation
coefficients are close to 1.0 and RMS difference is less than
10%. Between 50 and 60 km 205 nm and LYRA-P proxies
provide the best accuracy. This confirms the importance of
the temperature and neutral species, which are defined (see
below) for the most part of the stratosphere by the solar irra-
diance in Herzberg continuum.

The vertical profiles of the correlation coefficient and
RMS differences for the hydroxyl are shown in Fig. 3. Hy-
droxyl behavior is very complicated and is defined by mul-
titude of physical and chemical processes in the atmosphere
(e.g., Brasseur and Solomon, 2005). In the mesosphere, how-
ever, the dominant source of hydroxyl is photolysis of the
water vapor in Lyman-α line; therefore above 60 km the best
accuracy is provided by Ly-α and LYRA-P proxies. The
correlation coefficients are close to 1.0 and RMS difference
does not exceed 20%. From 20 to 60 km the production of
hydroxyl depends on the ozone and excited atomic oxygen
concentrations, which are better represented by 205 nm and
LYRA-P proxies. For these altitudes the correlation is still
high (∼0.5) for SUSIM data set, but for the SOLSTICE rea-
sonable accuracy cannot be achieved. The RMS differences
are large (∼100%) below 40 km for both data sets, which
means that none of the considered proxies are able to pro-
vide satisfactory accuracy for the hydroxyl between 20 and
40 km.

The vertical profiles of the correlation coefficient and
RMS differences for the ozone are shown in Fig. 4. The
ozone sensitivity to the solar spectral UV irradiance variabil-
ity has been considered in many publications (see Brasseur
and Solomon, 2005 and references therein). Rozanov et
al. (2002) found out that an increase of solar UV irradiance in
the spectral region 170–240 nm leads to the ozone enhance-
ment between 20 and 90 km due to additional molecular
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Fig. 2. Positive ions: Vertical profiles of the correlation (upper row) and relative RMS difference (lower row) of daily variations of the total
positive ions for SUSIM (left column) and SOLSTICE (right column) with different proxies: Ly-α (solid line, crosses), 205 nm (solid line,
diamonds), LYRA-P (solid line, filled circles), TSI (dashed line, triangles), F10.7(dashed line, squares), and NMD (dashed line, asterisks).

oxygen photolysis and subsequent increase of the ozone pro-
duction, while an increase of the solar irradiance in Hartley
band (240–300 nm) results in the ozone depletion from 40
to 70 km due to elevated ozone destruction rates by the en-
hanced ozone photolysis. Therefore the accuracy of the
ozone simulation depends on the accuracy of the solar UV
reconstruction in rather wide spectral range and also on the
variability of the applied solar UV irradiance. In case of
SUSIM data the accuracy of the ozone prediction is very high
with LYRA-P and 205 nm proxies below 60 km and LYRA-P
and Ly-α proxies above 60 km. For the SOLSTICE data the
ozone simulation has much lower accuracy in the 40–65 km

level. This effect is caused by the fact that the variability of
the solar UV irradiance in Hartley band in SOLSTICE data
is higher than in SUSIM data (e.g., Rozanov et al., 2008).
As it is clear from Fig. 1 our proxies do not properly repro-
duce the solar irradiance in the Hartley band, which results in
unaccounted ozone variability in the case of the SOLSTICE
data. This effect is not so pronounced for the SUSIM data
because the variability of the solar irradiance in Hartley band
is much smaller.

The vertical profiles of the correlation coefficient and
RMS differences for the temperature are shown in Fig. 5. The
temperature sensitivity to the solar spectral UV irradiance

www.atmos-chem-phys.net/8/2965/2008/ Atmos. Chem. Phys., 8, 2965–2973, 2008
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Fig. 3. Hydroxyl: Vertical profiles of the correlation (upper row) and relative RMS difference (lower row) of daily variations of the hydroxyl
for SUSIM (left column) and SOLSTICE (right column) with different proxies: Ly-α (solid line, crosses), 205 nm (solid line, diamonds),
LYRA-P (solid line, filled circles), TSI (dashed line, triangles), F10.7(dashed line, squares), and NMD (dashed line, asterisks).

variability has been analyzed by Rozanov et al. (2002).
They found out that the observed enhancement of solar UV
irradiance results in the warming of the entire stratosphere
due to absorption of additional energy by ozone and oxy-
gen. The oxygen Schumann-Runge band is responsible for
the heating of the mesosphere, while the ozone absorption
in Herzberg continuum and part of the ozone Hartley band
(260–300 nm) warms up the stratosphere. It should be noted
that the contribution of the Hartley band is slightly smaller
in comparison with Herzberg continuum, and the absorp-
tion in Lyman-α is noticeable only in the upper mesosphere.

Because the solar irradiance in Schumann-Runge band and
Herzberg continuum is well correlated with LYRA-P and
205 nm proxies, the accuracy of the temperature simulation
is rather high especially above 40 km. Below 40 km the in-
fluence of Hartley band is noticeable and the accuracy of
the temperature simulations drops down. The results also
demonstrated that the other proxies (including F10.7) do not
provide sufficient accuracy for the simulation of all consid-
ered quantities.
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Fig. 4. Ozone: Vertical profiles of the correlation (upper row) and relative RMS difference (lower row) of daily variations of the ozone
for SUSIM (left column) and SOLSTICE (right column) with different proxies: Ly-α (solid line, crosses), 205 nm (solid line, diamonds),
LYRA-P (solid line, filled circles), TSI (dashed line, triangles), F10.7(dashed line, squares), and NMD (dashed line, asterisks).

5 Conclusions

In this paper we evaluate the applicability of the data from the
future LYRA experiment onboard ESA PROBA2 satellite for
the nowcasting of the middle atmosphere state. The LYRA
instrument onboard ESA PROBA2 satellite will provide 6-
hourly solar irradiance at the Lyman-alpha (121.6 nm) and
the Herzberg continuum (∼200–220 nm wavelength range).
To reconstruct the solar irradiance for the wide spectral range
(120–680 nm) needed for nowcasting models we have ap-
plied the statistical tool based on the correlation of the solar

spectral UV irradiance with different proxies using the daily
solar spectral irradiance measured with SUSIM and SOL-
STICE instruments onboard UARS satellite. To estimate the
accuracy of the reconstructed solar irradiance we have ap-
plied 1-D transient radiative-convective model with neutral
and ion chemistry. We compared the results of transient 1-
year long model simulations for the year 2000 driven by the
observed and reconstructed solar irradiance and showed that
the reconstruction of the full spectrum using linear regres-
sion equation based on the solar irradiance in two LYRA
channels can be successfully used for nowcasting of the

www.atmos-chem-phys.net/8/2965/2008/ Atmos. Chem. Phys., 8, 2965–2973, 2008
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Fig. 5. Temperature: Vertical profiles of the correlation (upper row) and relative RMS difference (lower row) of daily variations of the
temperature for SUSIM (left column) and SOLSTICE (right column) with different proxies: Ly-α (solid line, crosses), 205 nm (solid line,
diamonds), LYRA-P (solid line, filled circles), TSI (dashed line, triangles), F10.7(dashed line, squares), and NMD (dashed line, asterisks).

middle atmosphere state above 40 km. Some problem with
ozone simulation between 40 and 70 km has been encoun-
tered when the SOLSTICE solar irradiance is used as the
reference. This problem is caused by the enhanced variabil-
ity of the SOLSTICE solar irradiance in the ozone Hartley
band. At the moment it is hard to say whether this prob-
lem is real or it is just instrumental error. We would like to
remind the reader that the SUSIM and SOLSTICE observa-
tions are not purely simultaneous but still refer to the state
of the Sun of the same day. Thus, the difference between
SUSIM and SOLSTICE data is an indication of the reliabil-
ity of the observations. Probably, further study with different

reference solar irradiance data set (SORCE, Rottman et al.,
2006) will help to solve this problem. Lower accuracy has
been obtained using Ly-α, HERZ and 205 nm proxies. Ly-α

proxy can be successfully used in the mesosphere and HERZ
and 205 nm proxies give good accuracy in the stratosphere,
but the accuracy of the combined LYRA-P proxy is supe-
rior. The solar irradiance reconstructed from F10.7, TSI and
NMD proxies does not provide satisfactory results. It is im-
portant to emphasize that all conclusions presented here are
valid for daily time scale. The correlation between solar ir-
radiance and considered proxies can be rather different for
hourly, monthly and annual time scales.
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Rozanov, E., Egorova T., Fröhlich, C., Haberreiter, M., Peter, T.,
and Schmutz, W.: Estimation of the Ozone and Temperature
Sensitivity to the Variation of Spectral Solar Flux, in: SOHO
11 Symposium From Solar Min to Max: Half a Solar Cycle with
SOHO, edited by: A. Wilson, ESA SP-508, ESA Publications
Division, Noordwijk, The Netherlands, 181–184, 2002.

Rozanov, E., Egorova, T., and Schmutz, W.: Response of the
Earth’s Atmosphere to the Solar Irradiance Variability, in: Cli-
mate Variability and Extremes during the Past 100 Years, edited
by: Brönnimann, S., Luterbacher, J., Ewen, T., Diaz, H. F., Sto-
larski, R. S., and Neu, U., Advances in Global Change Research,
33, 317–331, Springer, 2008.

Sander, S. P., Friedl, R., Golden, D., et al.: Chemical kinetics and
photochemical data for use in atmospheric studies: Evaluation
number 14, Tech. Rep. JPL Publ. 02-25, Jet Propulsion Labora-
tory, 2003.

Thuillier, G., Dewitte, S., Schmutz, W., and the Picard Team: Si-
multaneous measurement of the total solar irradiance and solar
diameter by the PICARD mission, Adv. Space Res., 38, 1792–
1806, 2006.

Unruh, Y., Krivova, N., Solanki, S., Harder, J., and Kopp, G.: Spec-
tral irradiance variations: Comparison between observations and
the SATIRE model on solar rotation time scales, Astronomy and
Astrophysics, accepted, 2008.

Wilkinson, D. C.: National Oceanic and Atmospheric Administra-
tion’s spacecraft anomaly data base and examples of solar activ-
ity affecting spacecraft, J. Spacecraft and Rockets, 31, March–
April, 1994.

Woods, T. N., Prinz, D. K., Rottman, G. J., et al.: Validation of the
UARS solar ultraviolet irradiances: Comparison with ATLAS 1
and 2 measurements, J. Geophys. Res., 101, 9541–9569, 1996.

www.atmos-chem-phys.net/8/2965/2008/ Atmos. Chem. Phys., 8, 2965–2973, 2008

http://www.ann-geophys.net/23/3055/2005/

