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Abstract

In this paper we present seven techniques that everybody
should know to improve example-based single image super
resolution (SR): 1) augmentation of data, 2) use of large
dictionaries with efficient search structures, 3) cascading,
4) image self-similarities, 5) back projection refinement, 6)
enhanced prediction by consistency check, and 7) context
reasoning.

We validate our seven techniques on standard SR bench-
marks (i.e. Set5, Set14, B100) and methods (i.e. A+, SR-
CNN, ANR, Zeyde, Yang) and achieve substantial improve-
ments. The techniques are widely applicable and require no
changes or only minor adjustments of the SR methods.

Moreover, our Improved A+ (IA) method sets new state-
of-the-art results outperforming A+ by up to 0.9dB on aver-
age PSNR whilst maintaining a low time complexity.

1. Introduction
Single image super-resolution (SR) aims at reconstruct-

ing a high-resolution (HR) image by restoring the high fre-
quencies details from a single low-resolution (LR) image.
SR is heavily ill-posed since multiple HR patches could cor-
respond to the same LR image patch. To address this prob-
lem, the SR literature proposes interpolation-based meth-
ods [29], reconstruction-based methods [3, 15, 25, 39, 41],
and learning-based methods [18, 10, 30, 31, 7, 5, 42, 6].

The example-based SR [13] uses prior knowledge under
the form of corresponding pairs of LR-HR image patches
extracted internally from the input LR image or from exter-
nal images. Most recent methods fit into this category.

In this paper we present seven ways to improve example-
based SR. We apply them to the major recent methods: the
Adjusted Anchored Neighborhood Regression (A+) method
introduced recently by Timofte et al. [31], the prior An-
chored Neighborhood Regression (ANR) method by the
same authors [30], the efficient K-SVD/OMP method of
Zeyde et al. [41], the sparse coding method of Yang et
al. [40], and the convolutional neural network method (SR-
CNN) of Dong et al. [7]. We achieve consistently signifi-
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Figure 1. We largely improve (red) over the original example-
based single image super-resolution methods (blue), i.e. our IA
method is 0.9dB better than A+ [31] and 2dB better than Yang et
al. [40]. Results reported on Set5, ×3. Details in Section 4.1.

cant improvements on standard benchmarks. Also, we com-
bine the techniques to derive our Improved A+ (IA) method.
Fig. 1 shows a comparison of the large relative improve-
ments when starting from the A+, ANR, Zeyde, or Yang
methods on Set5 test images for magnification factor ×3.
Zeyde is improved by 0.7dB in Peak Signal to Noise Ratio
(PSNR), Yang and ANR by 0.8dB, and A+ by 0.9dB. Also,
in Fig. 8 we draw a summary of improvements for A+ in
relation to our proposed Improved A+ (IA) method.

The remainder of the paper is structured as follows. First,
in Section 2 we describe the framework that we use in all
our experiments and briefly review the anchored regression
baseline - the A+ method [31]. Then in Section 3 we present
the seven ways to improve SR and introduce our Improved
A+ (IA) method. In Section 4 we discuss the generality of
the proposed techniques and the results, to then draw the
conclusions in Section 5.

2. General framework

We adopt the framework of [30, 31] for developing our
methods and running the experiments. As in those papers,
we use 91 training images proposed by [40], and work in
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original rotated 90◦ rotated 180◦ rotated 270◦

flipped 90◦ & flipped 180◦ & flipped 270◦ & flipped
Figure 2. Augmentation of training images by rotation and flip.

the YCbCr color space on the luminance component while
the chroma components are bicubically interpolated. For
a given magnification factor, these HR images are (bicu-
bically) downscaled to the corresponding LR images. The
magnification factor is fixed to ×3 when comparing the 7
techniques. The LR and their corresponding HR images
are then used for training example-based super-resolution
methods such as A+ [31], ANR [30], or Zeyde [41]. For
quantitative (PSNR) and qualitative evaluation 3 datasets
Set5, Set14, and B100 are used as in [31]. In the next sec-
tion we first describe the employed datasets, then the meth-
ods we use or compare with, to finally briefly review the
A+ [31] baseline method.

2.1. Datasets

We use the same standard benchmarks and datasets as
used in [31] for introducing A+, and in [40, 41, 30, 24, 7,
27, 8] among others.
Train91 is a training set of 91 RGB color bitmap images
as proposed by Yang et al. [40]. Train91 contains mainly
small sized flower images. The average image size is only
∼ 6, 500 pixels. Fig. 2 shows one of the training images.
Set5 is used for reporting results. It contains five popu-
lar images: one medium size image (‘baby’, 512 × 512)
and four smaller ones (‘bird’, ‘butterfly’,‘head’, ‘women’).
They were used in [2] and adopted under the name ‘Set5’
in [30].
Set14 is a larger, more diverse set than Set5. It contains 14
commonly used bitmap images for reporting image process-
ing results. The images in Set14 are larger on average than
those in Set5. This selection of 14 images was proposed by
Zeyde et al. [41].
B100 is the testing set of 100 images from the Berkeley
Segmentation Dataset [20]. The images cover a large vari-
ety of real-life scenes and all have the same size of 481×321
pixels. We use them for testing as in [31].
L20 is our newly proposed dataset. 1 Since all the above
mentioned datasets have images of medium-low resolution,

1http://www.vision.ee.ethz.ch/˜timofter/

below 0.5m pixels, we decided to created a new dataset,
L20, with 20 large high resolution images. The images, as
seen in Fig. 10, are diverse in content, and their sizes vary
from 3m pixels to up to 29m pixels. We conduct the self-
similarity (S) experiments on the L20 dataset as discussed
in Section 3.6.

2.2. Methods

We report results for several representative SR methods.
Yang is a method of Yang et al. [40] that employs sparse
coding and sparse dictionaries for learning a compact rep-
resentation of the LR-HR priors/training samples and for
sharp HR reconstruction results.
Zeyde is a method of Zeyde et al. [41] that improves
the Yang method by efficiently learning dictionaries using
K-SVD [1] and employing Orthogonal Matching Pursuit
(OMP) for sparse solutions.
ANR or Anchored Neighborhood Regression of Timo-
fte et al. [30] relaxes the sparse decomposition optimiza-
tion of patches from Yang and Zeyde to a ridge regression
which can be solved offline and stored per each dictionary
atom/anchor. This results in large speed benefits.
A+ of Timofte et al. [31] learns the regressors from all the
training patches in the local neighborhood of the anchoring
point/dictionary atom, and not solely from the anchoring
points/dictionary atoms as ANR does. A+ and ANR have
the same run-time complexity. See more in Section 2.3.
SRCNN is introduced by Dong et al. [7], and is based
on Convolutional Neural Networks (CNN) [19]. It directly
learns to map patches from low to high resolution images.

2.3. Anchored regression baseline (A+)

Our main baseline is the efficient Adjusted Anchored
Neighborhood Regression (A+) method [31]. The choice is
motivated by the low time complexity of A+ both at training
and testing and its top performance. A+ and our improved
methods share the same features for LR and HR patches and
the same dictionary training (K-SVD [1]) as the ANR [30]
and Zeyde [41] methods. The LR features are vertical and
horizontal gradient responses, PCA projected for 99% en-
ergy preservation. The reference LR patch size is 3 × 3
while the HR patch is s2 larger, with s the scaling factor.

A+ assumes a partition of the LR space around the dic-
tionary atoms, called anchors. For each anchor j a ridge
regressor is trained on the local neighborhood Nl of fixed
size of LR training patches (features). Thus, for each LR
input patch y we minimize

min
β
‖y −Nlβ‖22 + λ‖β‖22. (1)

Then the LR input patch y is projected to the HR space as

x = Nh(N
T
l Nl + λI)−1NT

l y = Pjy, (2)

http://www.vision.ee.ethz.ch/~timofter/
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Figure 3. Average PSNR performance of A+ on (Set5, ×3) im-
proves with the number of training samples and regressors

where Nh are the corresponding HR patches of the LR
neighborhood Nl. Pj is the stored projection matrix for the
anchor j. The SR process for A+ (and ANR) at test time
then becomes a nearest anchor search followed by a ma-
trix multiplication (application of the corresponding stored
regressor) for each input LR patch.

3. Proposed methods
3.1. Augmentation of training data (A)

More training data results in an increase in performance
up to a point where exponentially more data is necessary
for any further improvement. This has been shown, among
others, by Timofte et al. in [30, 31] for neighbor embedding
methods and anchored regression methods and by Dong et
al. in [7, 8] for the convolutional neural networks-based
methods. Zhu et al. [43] assume deformable patches and
Huang et al. [16] transform self-exemplars.

Around∼0.5 million corresponding patches of 3×3 pix-
els for LR and 9× 9 for HR are extracted from the Train91
images. By scaling the training images in [31] 5 million
patches are extracted for A+ and improve the PSNR perfor-
mance from 32.39dB with 0.5 million to 32.55dB on Set5
and magnification ×3. Inspired by the image classification
literature [4], we consider also the flipped and rotated ver-
sions of the training images/patches. If we rotate the orig-
inal images by 90◦, 180◦, 270◦ and flip them upside-down
(see Fig. 2 and [14]), we get 728 images without altered
content. Using an interpolation for other rotation angles can
corrupt edges and impact the performance.

In Fig. 3 we show how the number of training LR-HR
samples affects the PSNR performance of the A+ method
on the Set5 images. The performance of A+ with 1024 re-
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Figure 4. Performance (Set5, ×3) improves with the number of
regressors/atoms (dictionary size).

gressors varies from 31.83dB when trained on 5000 sam-
ples to 32.39dB for 0.5 million and 32.71dB when using 50
million training samples. Note that the running time at test
stays the same as it does not depend on the number of train-
ing samples but on the number of regressors. By A+A we
mark our setup with A+, 65,536 regressors and 50 million
training samples, improving 0.3dB over A+.

3.2. Large dictionary and hierarchical search (H)

In general, if the dictionary size (basis of sam-
ples/anchoring points) is increased, the performance for
sparse coding (such as Zeyde [41] or Yang [40]) or an-
chored methods (such as ANR [30] or A+ [31]) improves
as the learned model generalizes better, as shown in Fig. 4.
We show in Fig. 3 on Set5, ×3 how the performance of
A+ increases when using 16 up to 65,536 regressors for any
fixed size pool of training samples. In A+ each regressor
is associated with an anchoring point. The anchors quan-
tize the LR feature space. The more anchors are used, the
smaller the quantization error gets and the easier is the local
regression. On Set5 the PSNR is 32.17dB for 16 regres-
sors, while it reaches 32.92dB for 65536 regressors with 50
million training samples (our A+A setup). However, the
more regressors (anchors) are used, the slower the method
gets. At running time, each LR patch (feature) is linearly
matched to all the anchors. The regressor of the closest an-
chor is applied to reconstruct the HR patch. Obviously, this
linear search in O(N) can be improved. Yet, the LR fea-
tures are high dimensional (30 after PCA reduction for ×3
for A+) and the speedup achievable with data search struc-
tures such as kd-trees, forests, or spherical hashing codes
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Figure 5. Performance (A+A on Set5, ×3) depends on the number
of regressors and the data search structure.

are rather small (3-4 times in [24, 27]).
Instead, we propose a hierarchical search structure in

O(
√
N) with very good empirical precision, that does not

change the training procedure of A+. Given N anchors and
their N regressors, we cluster them into

√
N groups using

k-means, each with an l2-normalized centroid (on a unit l2-
norm hypersphere). To each centroid we assign the c

√
N

most correlated anchors. This results in a 2-layers struc-
ture. For each query we linearly search for the most corre-
lated centroid (1st layer) to then linearly search within the
anchors assigned to it (2nd layer). c = 4 is fixed in all our
experiments, so that one anchor potentially can be assigned
to more centroids to handle the cluster boundary well.

In Fig. 5 we depict the performance of A+A with and
without our hierarchical search structure in relation to the
number of trained regressors. The hierarchical structure
looses at most only 0.03dB but consistently speeds up above
1,024 regressors. A+A with hierarchical search (H) and
65,536 regressors has a running time comparable to the
original A+ with linear search and 1,024 regressors, but is
0.3dB better.

3.3. Back projection (B)

Applying an iterative back projection (B) refinement [17]
generally improves the PSNR as it makes the HR recon-
struction consistent with the LR input and the employed
degradation operators such as blur, downscaling, and down-
sampling. Knowing the degradation operators is a must
for the IBP approaches and therefore they need to be es-
timated [21]. Assuming the degradation operators to be
known, (B) improves the PSNR of A+ by up to 0.06dB, de-
pending on the settings as shown in column A+B in Table 5,
when starting from the A+ results.

In Table 1 we compare the improvements obtained with
our iterative back projection (B) refinement when starting
from different SR methods. The largest improvement is
of 0.59dB when starting from the sparse coding method of

Table 1. Back projection (B) improves the super-resolution PSNR
results (Set5, ×3).

(B) Yang ANR Zeyde SRCNN A+ IA
[40] [30] [41] [7] [31] (ours)

× 31.41 31.92 31.90 32.39 32.59 33.46
X 32.00 31.99 32.04 32.52 32.63 33.51

Improv. +0.59 +0.07 +0.14 +0.13 +0.04 +0.05

Yang et al. [40], whereas for A+ it only improves 0.04dB.
This behavior can be explained by the fact that the reference
A+ is 1.18dB better than the reference Yang method. There-
fore, A+’s HR reconstruction is much more consistent with
the LR image than Yang’s and improving by using (B) is
more difficult. The refined Yang result is 0.59dB better than
the baseline Yang method but still 0.59dB behind A+ with-
out refinement. Note that generally the explicit form for the
degradation operators is unknown and their estimation from
prior train examples is imprecise [11, 26], therefore our re-
ported results with (B) refinement are an upper bound for a
practical implementation and difficult to reach.

3.4. Cascade of core SR method (C)

As the magnification factor is decreased, super-
resolution becomes more accurate, since the space of possi-
ble HR solutions for each LR patch and thus the ambiguity
decreases. Glasner et al. [15] use small SR steps to gradu-
ally refine the contents up to the desired HR. The errors are
usually enlarged by the subsequent steps and the time com-
plexity depends on the number of steps. Instead of super-
resolving the LR image in small steps, we can go in one
step (stage) and then refine the prediction using the same
SR method again adapted to this input. We consider the
output of the previous stage as LR image input and as tar-
get the HR image for each stage. Thus, we build a cascade
of trained models, where each stage brings the prediction
closer to the target HR image. The cascades and the layered
or recurrent processing are broadly used concepts in vision
tasks (i.e. object detection [34] and deep learning [4]). The
method of Peleg and Elad [23] and the SRCNN method of
Dong et al. [7] are layered by design and, also, the very
recent CSCN method of Wang et al. [35]. While the in-
cremental approach has a loose control over the errors, the
cascade explicitly minimizes the prediction errors at each
stage.

In our cascaded A+, called A+C, with 50 million training
samples, we keep the same features and settings for all the
stages but have models that have been trained per stage. As
shown in Fig. 6 and Table 2 the performance improves from
32.92dB after the 1st stage of the cascade and saturates at
33.21dB after the 4th stage of the cascade. The running
time is linear in the number of stages. The same cascading
idea of A+ was applied for image demosaicing in [36] with
two stages.
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Table 2. Cascading (C) and enhanced prediction (E) improve the
super-resolution PSNR results (Set5, ×3).

Cascade (E) ANR Zeyde A+ IA
[30] [41] [31] (ours)

1 stage × 31.92 31.90 32.59 32.77
1 stage X 32.97 31.96 32.69 32.91
2 stages × 32.19 32.20 32.70 33.05
2 stages X 32.25 32.26 32.81 33.21
3 stages × 32.22 32.23 32.76 33.18
3 stages X 32.28 32.29 32.87 33.34
4 stages × 32.24 32.24 32.79 33.33
4 stages X 32.30 32.31 32.89 33.46
Improvement +0.38 +0.41 +0.30 +0.69

Table 3. Enhanced prediction (E) improves the super-resolution
PSNR results (Set5, ×3).

(E) Yang ANR Zeyde SRCNN A+ IA
[40] [30] [41] [7] [31] (ours)

× 31.41 31.92 31.90 32.39 32.59 33.21
X 31.65 31.97 31.96 32.61 32.68 33.46

Improv. +0.24 +0.05 +0.06 +0.22 +0.09 +0.25

3.5. Enhanced prediction (E)

In image classification [4] often the prediction for an in-
put image is enhanced by averaging the predictions on a set
of transformed images derived from it. The most common
transformations include cropping, flipping, and rotations. In
SR image rotations and flips should lead to the same HR re-
sults at pixel level. Therefore, we apply rotations and flips
on the LR image as shown in see Fig. 2 to get a set of 8
LR images, then apply the SR method on each, reverse the
transformation on the HR outputs and average for the final
HR result.
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Figure 7. Average PSNR gain comparison of internal dictionary,
external dictionary and combined dictionary with respect to the
input LR image size (L20, ×3).

On Set5 (see Fig. 6 and Table 2) the enhanced predic-
tion (E) gives a 0.05dB improvement for a single stage and
more than 0.24dB when 4 stages are employed in the cas-
cade. The running time is linear in the number of transfor-
mations. In Table 3 we report the improvements due to (E)
for different SR methods. It varies from +0.05dB for ANR
up to +0.25dB for the Yang method.

3.6. Self-similarities (S)

The image self-similarities (or patch redundancy) at
different image scales can help to discriminate between
equally possible HR reconstructions. While we considered
external dictionaries, thus priors from LR and HR training
images, some advocate internal dictionaries, i.e. dictionar-
ies built from the input LR image, matching the image con-
text. Exponents are Glasner et al. [15] or Dong et al. [9],
among others [37, 12, 38, 16]. Extracting and building mod-
els adapted to each new input image is expensive. Also,
in recent works, and on the standard benchmarks, meth-
ods such as SRCNN [7] and A+ [31] based on external
dictionaries proved better in both PSNR and running time.
Mosseri et al. [22] discuss the combination of internal and
external dictionaries for image denoising.

We point out that depending on the size of the input LR
image and the textural complexity, the internal dictionaries
can be better than the external dictionaries for SR. Huang et
al. [16] with internal dictionaries report better results than
A+ (external) for urban HR images with high geometric
regularities. We bicubically downscale the L20 images and
plot the improvements over an external dictionary in Fig. 7.
Above 246, 000 LR pixels the internal dictionary improves
over the external one. However, the best results are obtained



Table 4. Reasoning with context (R) improves the super-resolution
PSNR results (Set5, ×3).

(R) ANR Zeyde A+(0.5m) A+ IA
Context [30] [41] [31] [31] (ours)
× 31.92 31.90 32.39 32.59 33.46
X 32.12 32.11 32.55 32.71 33.51

Improv. +0.20 +0.21 +0.16 +0.12 +0.05

using both external and internal dictionaries. All the dictio-
naries were built with a fixed budget of 500000 patches and
1024 regressors.

3.7. Reasoning with context (R)

The immediate surrounding of a LR patch adds extra in-
formation helping SR. For example, Dong et al. [10] train
domain specific models, Sun et al. [28] hallucinate using
context constraints and Timofte et al. [32] employ the se-
mantic information. We consider context images centered
on each LR patch of size equal with the LR patch size times
the scaling factor (×3). We extract the same features as
for the LR patches but in the (×3) downscaled image and
cluster them into 4 groups with 4 centroids. A small num-
ber that does not increase the time complexity much but
it is still relevant for analyzing the context idea. We keep
the standard A+ pipeline with 1024 anchors and 0.5 million
training patches ( A+(0.5m) ). To each anchor we assign the
closest patches and instead of training one regressor as A+
would, we train 4 context specific regressors. For each con-
text we compute a regressor using the 1024 patches closest
to both anchor (distance weighted by 10) and context cen-
troid (distance weighted by 1). For patches of comparable
distances to the anchor the distance to the context centroid
makes the difference. At testing time, each LR patch is first
matched against the anchors and then the regressor of the
closest context is used to get the HR output. By reasoning
with context we improve from 32.39dB to 32.55dB on Set5,
while the running time only slightly increases. In Table 4
we report the improvements achieved using reasoning with
context (R) over original SR methods. The (R) derivations
were similar to the one explained for the A+ (0.5m) setup.

3.8. Improved A+ (IA)

Any combination of the proposed techniques would
likely improve over the baseline example-based super-
resolution method. If we start from the A+ method, and (A)
add augmentation (50 million training samples), increase
the number of regressors (to 65536) and (H) use the hier-
archical search structure, we achieve 0.33dB improvement
over A+ (Set5, ×3) without an increase in running time.
Adding reasoning with context (R) slightly increases the
running time for a gain of 0.1dB. The cascade (C) allows for
another jump in performance, +0.27dB, while the enhanced
prediction (E) brings another 0.25dB. The gain brought by

Figure 8. Seven ways to Improve A+. PSNR gains for Set5, ×3.

(C) and (E) comes at the price of increasing the computa-
tion time. The full setup, using (A, H, R, C, E) is marked
as our proposed Improved A+ (IA) method. The addition of
internal dictionaries (S) is possible but undesirable due to
the computational cost. Adding IBP (B) to the IA method
can further improve the performance by 0.05dB.

The seven ways to improve A+ are summarized in Fig. 8.
The Improved A+ (IA) method is 0.9dB better than the
baseline A+ method by using 5 techniques (A, H, R, C, E).

Table 5 compares the results with A+ [31], Zeyde [41],
and SRCNN [7] on standard benchmarks and for magnifi-
cations ×2, ×3, ×4. Figs. 9 and 11 show visual results.

4. Discussion

4.1. Generality of the seven ways

Our study focused and demonstrated the seven ways to
improve SR mainly on the A+ method. As a result, the
IA method has been proposed, combining 5 out of 7 ways,
namely (A, H, R, C, E). The effect of applying the differ-
ent techniques is additive, each contributing to the final per-
formance. These techniques are general in the sense that
they can be applied to other example-based single image
super-resolution methods as well. We demonstrated the
techniques on five methods.

In Fig. 1 we report on a running time versus PSNR per-
formance scale the results (Set5,×3) of the reference meth-
ods A+, ANR, Zeyde, and Yang together with the improved
results starting from these methods. The A+A method com-
bines A+ with A and H, while the A+C method combines
A+ with A, H, and C. A+A and A+C are lighter versions of
our IA. For the improved ANR result we combined the A,
H, R, B, and E techniques, for the improved Zeyde result
we combined A, R, B, and E, while for Yang we combined
B and E without retraining the original model.

Note that using combinations of the seven techniques we
are able to improve significantly all the methods considered
in our study which validates the wide applicability of these
techniques. Thus, A+ is improved by 0.9dB in PSNR, Yang



Table 5. Average PSNR on Set5, Set14, and B100 and the improvement (red) of our IA (blue) over A+ (bold) method.
Benchmark Bicubic NE+LLE Zeyde ANR SRCNN A+ A+B A+A A+C IA Improvement

[30] [41] [30] [7] [31] (ours) (ours) (ours) (ours) of IA over A+
x2 33.66 35.77 35.78 35.83 36.34 36.55 36.60 36.89 37.26 37.39 +0.84

Set5 x3 30.39 31.84 31.90 31.92 32.39 32.59 32.63 32.92 33.20 33.46 +0.87
x4 28.42 29.61 29.69 29.69 30.09 30.29 30.33 30.58 30.86 31.10 +0.81
x2 30.23 31.76 31.81 31.80 32.18 32.28 32.33 32.48 32.73 32.87 +0.59

Set14 x3 27.54 28.60 28.67 28.65 29.00 29.13 29.16 29.33 29.51 29.69 +0.56
x4 26.00 26.81 26.88 26.85 27.20 27.32 27.35 27.54 27.74 27.88 +0.56
x2 29.56 30.41 30.40 30.44 30.71 31.26 31.28 31.38 31.57 31.79 +0.53

B100 x3 27.21 27.85 27.87 27.89 28.10 28.30 28.32 28.44 28.55 28.76 +0.46
x4 25.96 26.47 26.51 26.51 26.66 26.84 26.86 26.96 27.07 27.25 +0.41

and ANR by 0.8dB and Zeyde by 0.7dB.

4.2. Benchmark results

All the experiments until now used Set5 and L20 and
magnification factor ×3. In Table 5 we report the average
PSNR performance on Set5, Set14, and B100, and for mag-
nification factors ×2, ×3, and ×4 of our methods in com-
parison with the baseline A+ [31], ANR [30], Zeyde [41],
and SRCNN [7] methods. Also we report the result of the
bicubic interpolation and the one for the Neighbor Embed-
ding with Locally Linear Embedding (NE+LLE) method of
Chang et al. [3] as adapted and implemented in [30]. All the
methods used the same Train91 dataset for training. For re-
porting improved results also for magnification factors ×2
and ×4, we keep the same parameters/settings as used for
the case of magnification ×3 for our A+B, A+A, A+C, and
IA methods. A+B is provided for reference as the degra-
dation operators usually are not known and are difficult to
estimate in practice. A+B just slightly improves over A+.
A+A improves 0.13dB up to 0.34dB over A+ while pre-
serving the running time. A+C further improves at the price
of running time, using a cascade with 3 stages. IA improves
0.4dB up to 0.9dB over the A+ results, and significantly
more over SRCNN, Zeyde, and ANR. 2

4.3. Qualitative assessment

For qualitatively assessing the IA performance we depict
in Fig. 11 several cropped images for magnification factors
×3 and ×4. Generally IA restores more sharp details with
fewer artifacts than the A+ and Zeyde methods do. For ex-
ample, the clarity and sharpness of the HR reconstruction
for the text image visibly improves from the Zeyde to A+
and then to our IA result. The same for other face features
such as chin, mouth or eyes in the image from the second
row of Fig. 9.

In Fig. 11 we show image results for magnification ×4
on Set14 for our IA method in comparison with the bicubic,
Zeyde, ANR, and A+ methods.

2For B100, we report PSNR before saving the images. Prior works [31,
33] report lower PSNR values after lossy JPEG compression.

Input Zeyde [41] A+ [31] IA (ours)

Figure 9. SR visual comparison. Best zoomed in on screen.

The supplementary material contains more per image
PSNR results and HR outputs for qualitative assessment.

5. Conclusion

We proposed seven ways to effectively improve the per-
formance of example-based super-resolution. Combined,
we obtain a new highly efficient method, called Improved
A+ (IA), based on the anchored regressors idea of A+. Non-
invasive techniques such as augmentation of the training
data, enhanced prediction by consistency checks, context
reasoning, or iterative back projection lead to a significant
boost in PSNR performance without significant increases
in running time. Our hierarchical organization of the an-
chors in the IA method allows us to handle orders of mag-
nitude more regressors than the original A+ at the same run-
ning time. Another technique, often overlooked, is the cas-
caded application of the core super-resolution method to-
wards HR restoration. Using the image self-similarities or
the context is shown also to improve PSNR. On standard
benchmarks IA improves 0.4dB up to 0.9dB over state-of-



Figure 10. L20 dataset. 20 high resolution large images.
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Figure 11. SR visual results for ×4. Images from Set14. Best zoomed in on screen.

the-art methods such as A+ [31] and SRCNN [7]. While
we demonstrated the large improvements mainly on the A+
framework, and several other methods (ANR, Yang, Zeyde,
SRCNN), we strongly believe that the proposed techniques
provide similar benefits for other example-based super-

resolution methods. The proposed techniques are generic
and require no changes to the core baseline method.

Acknowledgement. This work was supported by the Eu-
ropean Research Council project VarCity (#273940).
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