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Abstract We study the potential observation at the LHC of
CP-violating effects in stop production and subsequent cas-
cade decays, gg → t̃i t̃i , t̃i → t χ̃0

j , χ̃0
j → χ̃0

1 �+�−, within
the Minimal Supersymmetric Standard Model. We study T-
odd asymmetries based on triple products between the dif-
ferent decay products. There may be a large CP asymmetry
at the parton level, but there is a significant dilution at the
hadronic level after integrating over the parton distribution
functions. Consequently, even for scenarios where large CP
intrinsic asymmetries are expected, the measurable asym-
metry is rather small. High luminosity and precise measure-
ments of masses, branching ratios and CP asymmetries may
enable measurements of the CP-violating parameters in cas-
cade decays at the LHC.

1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is
a particularly compelling extension of the Standard Model
that may soon be explored at the Large Hadron Collider
(LHC). Current data suggest that, if the MSSM is re-
alised in Nature, the supersymmetry scale should easily be
within reach of the LHC design centre-of-mass energy of
14 TeV [1, 2]. If supersymmetry is discovered, many studies
will be required to determine the exact details of its realisa-
tion.

The MSSM contains a large number of (as yet) unde-
termined parameters that may have non-zero phases [3, 4].
Many of these phases are unphysical in the sense that they
can be absorbed into the definitions of the fields; however,
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not all phases can be consistently removed in this way. In
the neutralino/chargino sector of the complex MSSM, the
phase of the SU(2) gaugino mass M2 is usually absorbed,
whereas the phases of the U(1) gaugino mass M1 and the
Higgsino mixing parameter μ are generally left manifest;
this is the parameterisation we use. The trilinear couplings
Af can also be complex. Studies of these CP-violating para-
meters in sparticle decays and via other properties measur-
able at the LHC will be challenging [5, 6]. However, they are
extremely important and provide a valuable training ground
for exploring the limits of the LHC’s capabilities.

Certain combinations of the CP-violating MSSM phases
are constrained by the experimental upper bounds on the
electric dipole moments (EDMs) of the electron, neutron
and atoms, notably 205Tl and 199Hg. Ignoring possible can-
cellations, the most severely constrained individual phase in
the MSSM is that of μ, which contributes at the one-loop
level. For O(100) GeV masses, one must require |φμ| � 0.1.
However, this restriction can be relaxed if the masses of the
first- and second-generation squarks are large (>TeV) while
the third-generation masses remain relatively small (<TeV),
or in the presence of cancellations between the contributions
of different CP-violating phases. We note that M1 also con-
tributes at the one-loop level, but again, if accidental can-
cellations are allowed between terms, it remains essentially
unconstrained. The phases of the third-generation trilinear
couplings, φAt,b,τ

have weaker constraints, as they contribute
to EDMs only at the two-loop level. Again, accidental can-
cellations can occur that weaken further the constraints: see
[7–17]. A comprehensive summary of the EDM constraints
and other CP-violating effects in SUSY is given in [18].
Here we study the complete range of CP phases in order
to see the general dependences exhibited by our observ-
ables, and what luminosity might be required to observe
these within the LHC environment. Therefore, we do not
calculate explicitly which values of the other phases might
be required for the points in our displayed scenarios to sat-
isfy the EDM constraints.
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The precise determination of these phases is expected to
be possible only at an e+e− linear collider, for instance at
the planned International Linear Collider (ILC) or at the
Compact Linear Collider (CLIC). However, it will be cru-
cial for such future search strategies to use LHC data to learn
as much as possible, as early as possible. Furthermore, the
combination of independent measurements at the LHC and a
linear collider will be important to determine the underlying
model.

In this paper we concentrate on the potential for observ-
ing unique CP-violating effects in decay chains at the LHC,
and investigate the circumstances under which a determina-
tion of the complex MSSM phases may be achievable, pos-
sibly with the support of other LHC measurements.

Specifically, we consider the LHC process gg → t̃ ¯̃t , with
subsequent decay t̃ → t χ̃0

2 , χ̃0
2 → �+�−χ̃0

1 . We consider the
situation where the χ̃0

2 decay is a three-body decay; this
leads to CP violation as there is a non-negligible contribu-
tion from interference diagrams. This process involves the
three phases φM1, φμ and φAt ; we discuss below the combi-
nations to which this process is sensitive. We extract infor-
mation on the phases using triple products formed from the
decay products of the stop. Such T-odd variables have also
been studied in the context of heavy squark and stau decays
in [6, 19–23]. Other related studies are [24–34].

The first CP-odd asymmetry we consider is formed from
Tt = pt · (p�+ × p�−). This quantity has been studied at the
parton level in [6], assuming pure gaugino-like neutralinos.
In our current study we provide analytic expressions for the
squared amplitude of the cascade process including full spin
correlations and general neutralino mixing, and also provide
an analytic expression for the phase space in the laboratory
system. We also incorporate parton density functions (pdfs)
and discuss the CP-odd observables at both the parton and
the hadronic levels. Transition to the latter level has a big
dilution effect on the measurability of a CP-odd asymmetry.
We include the possible LHC uncertainties in masses and
asymmetries and discuss the extent to which CP-violating
phases may be constrained in such cascade decays at the
LHC.

In [21], further CP sensitive asymmetries formed from
the momentum of the b quark in the top decay were stud-
ied under the assumption of 2-body neutralino decays into
on-shell sleptons, namely Tb = pb · (p�+ × p�−) and Ttb =
pb · (pt ×p�±). These variables are sensitive to φM1 and φAt ,
but they have different dependences on the CP-violating
phases as described in Sect. 2.3. Therefore, a combination
of all three observables would in principle allow one to dis-
entangle the influences of all three phases.

Since T-odd observables can also be generated by final-
state interactions at the one-loop level, one should in prin-
ciple combine the asymmetry for a process with that one
of its charge-conjugated process. If a non-zero asymmetry

is then observed in this combination, it must correspond
to a violation of CP symmetry. For the triple product, Tb ,
this is experimentally possible as long as the associated W

decays into a final-state lepton, which enables us to deter-
mine the change of the t̃ . Regarding the other triple prod-
ucts, we require information from the opposite decay chain
to identify the charge. In all the scenarios we consider, the
decay t̃ → χ̃+

i b, is dominant, enabling charge identification
in principle. However, a detailed simulation including all
combinatorial aspects and also other background processes
would be required to validate this possibility.

We begin by describing the process under consideration
in Sect. 2, including the phases involved and their various
effects. In Sect. 3 we present numerical results for three
specific benchmark scenarios and discuss the potential for
a measurement at the LHC. The appendices contain details
of the Lagrangian, the expression for the squared amplitude
including full spin correlations, and the kinematics of the
phase space in the laboratory system.

2 Formalism

2.1 The process studied and its squared amplitude

We study the dominant stop production process at the LHC,
namely

gg → t̃i
˜̄ti , (2.1)

with the subsequent decay chain

t̃i → χ̃0
j + t → χ̃0

1 �+�− + Wb. (2.2)

At tree level, the production process (2.1) proceeds via
g exchange in the direct channel and t̃ exchange in the
crossed channel, and via a quartic coupling, as shown in
Fig. 2.1. Another possible source of t̃1s is their production in
gluino decays, g̃ → t̃ t . However this leads to an experimen-
tally more complex topology than the direct production and

Fig. 2.1 Feynman diagrams for the production process gg → t̃1 t̃1
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consequently we do not investigate this channel. The La-
grangian and the resulting neutralino and stop mixings and
couplings are described in Appendix A.

Since gluons do not couple to off-diagonal combinations
of stop mass eigenstates of opposite chirality, and similarly
for stop exchange and the quadratic couplings, t̃1

¯̃t2 produc-
tion occurs only at the loop level, and we do not consider
it here. We focus here on t̃1

¯̃t1 production, since the recon-
struction of full decay chains of t̃1 seems achievable, even
in the complex experimental environment at the LHC. With
the exception of the stop mass eigenvalues, see Appendix A,
no effects from supersymmetric CP-violating couplings oc-
cur in the tree-level production process.

The first step in the cascade decay chain is the two-body
process t̃i → t χ̃0

2 . Here CP-violating couplings of the t̃1 en-
ter as well as those of the χ̃0

2 , and are dominated by the
phases φAt and φM1 ; see Appendix B.1.1 Since constraints
from electric dipole measurements strongly constrain φμ,
we set φμ = 0 in our study [35–37]. We consider spectra
where the second steps in the cascade decay chains are the
three-body decays of the neutralino, χ̃0

2 → χ̃0
1 �+�− (cf. Ap-

pendix B.2) and the dominant top decay t → Wb (cf. Ap-
pendix B.3). The neutralino decay occurs via Z0 exchange
in the direct channel and via �̃L,R exchanges in the crossed
channels, cf. Fig. 2.2. It is very sensitive to CP-violating su-
persymmetric couplings, and its structure has been studied
in detail in [38, 39]. The phase φM1 (and also φμ, which has
been set to zero here) affects the mass of the χ̃0

2 , as well as
its couplings and decay rates.

Using the formalism of [39, 40], the squared amplitude
|T |2 of the full process can be factorised into the processes
of production gg → t̃1

¯̃t1 and the subsequent decays t̃1 →
t χ̃0

2 , χ̃0
2 → χ̃0

1 �+�− and t → Wb, with the second t̃1 being
unobserved. We apply the narrow-width approximation for
the masses of the intermediate particles, t̃1, χ̃0

2 and t , which
is appropriate since the widths of the respective particles are
in all cases much smaller than their masses, cf. Table 3.1.
the squared amplitude can then be expressed in the form

|T |2 = 4
∣
∣Δ(t̃1)

∣
∣
2∣
∣Δ
(

χ̃0
2

)∣
∣
2∣
∣Δ(t)

∣
∣2P(t̃1 t̃1)

×
{

P
(

χ̃0
2 t
)

D
(

χ̃0
2

)

D(t) +
3
∑

a=1

Σa
P

(

χ̃0
2

)

Σa
D

(

χ̃0
2

)

D(t)

+
3
∑

b=1

Σb
P (t)Σb

D(t)D
(

χ̃0
2

)

+
3
∑

a,b=1

Σab
P

(

χ̃0
2 t
)

Σa
D

(

χ̃0
2

)

Σb
D(t)

}

, (2.3)

1Their structure has also been studied in detail in [21].

where a = 1,2,3 refers to the polarisation states of the neu-
tralino χ̃0

i and top quark, which are described by the po-
larisation vectors sa(χ̃0

i ), sb(t) given in Appendix B.1. In
addition, we have the following.

• Δ(t̃1), Δ(χ̃0
2 ) and Δ(t) are the ‘propagators’ of the in-

termediate particles which lead to the factors Et̃1
/mt̃1

Γt̃1
,

Eχ̃0
2
/mχ̃0

2
Γχ̃0

2
and Et/mtΓt in the narrow-width approxi-

mation.
• P(t̃1 t̃1), P(tχ̃0

2 ), D(χ̃0
i ) and D(t) are the terms in the

production and decay that are independent of the polari-
sations of the decaying neutralino and top, whereas

• Σa
P (χ̃0

i ), Σb
P (t), Σab

P (χ̃0
2 t) and Σa

D(χ̃0
i ), Σb

D(t) are the
terms containing the correlations between production and
decay spins of the χ̃0

2 and t .

According to our choice of the polarisation vectors
sa(χ̃0

i ) [sb(t)], see (B.8)–(B.13) in Appendix B.1, Σ3
P /P

is the longitudinal polarisation, Σ1
P /P is the transverse po-

larisation in the production plane, and Σ2
P /P is the polari-

sation perpendicular to the reference plane of the neutralino
χ̃0

i [top quark t].

2.2 Cross section for the whole process at parton level

The differential cross section in the laboratory system is

dσ = 1

8E2
b

|T |2(2π)4δ4(p1 + p2 −
∑

n

pn

)

dlips(pn), (2.4)

where Eb is the beam energy of the gluons, p1 and p2 are
the momenta of the incoming gluons, the pn are the mo-
menta of the outgoing particles and dlips(pn) is the Lorentz-
invariant phase-space element. Integrating over all angles,
all spin-dependent contributions are cancelled and the cross
section for the combined process of production and decay is
given by

σ = σ(gg → t̃1
¯̃t1) × BR

(

t̃1 → t χ̃0
2

)× BR
(

χ̃0
2 → χ̃0

1 �+�−)

× BR(t → Wb)

= |Δ(t̃1)|2|Δ(χ̃0
2 )|2|Δ(t)|2

2E2
b

×
∫

P(t̃1 t̃1)P
(

χ̃0
2 t
)

D
(

χ̃0
2

)

D(t)(2π)4δ4

×
(

p1 + p2 −
∑

n

pn

)

dlips(pn). (2.5)

The explicit expression for the phase space in the laboratory
system is given in Appendix C.

2.3 Structure of the T-odd asymmetries

Suitable tools to study CP-violating effects are T-odd ob-
servables based on triple products of momenta or spin vec-
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Fig. 2.2 Feynman diagrams for
the three-body decays
χ̃0

i → χ̃0
k �+�−

tors of the involved particles. In this paper we study the fol-
lowing T-odd observables:

Tt = �pt · ( �p�+ × �p�−), (2.6)

Tb = �pb · ( �p�+ × �p�−), (2.7)

Ttb = �pt · ( �pb × �p�±). (2.8)

The T-odd asymmetries are defined as

ATf
= NTf + − NTf −

NTf + + NTf −
=
∫

sign{Tf }|T |2 dlips
∫ |T |2 dlips

,

f = t, b and tb, (2.9)

where NTf +, NTf − are the numbers of events for which
Tf is positive and negative respectively, and the second de-
nominator in (2.9),

∫ |T |2dlips, is proportional to the corre-

sponding cross section, namely σ(gg → t̃1
˜̄t1 → t χ̃0

1 �+�−)

in (2.6) and σ(gg → t̃1
˜̄t1 → Wbχ̃0

1 �+�−) in (2.7) and (2.8).
In the second numerator in (2.9), only the triple-product cor-
relations enter via the spin-dependent terms, as explained in
(2.11) and the following sections.

The observable ATb
has the advantage that it is not neces-

sary to reconstruct the momentum of the decaying t quark.
However, as explained below, in order to disentangle the ef-
fects of both phases of At and M1, it will be necessary to
study all possible observables.

The asymmetry ATf
, (2.9), is odd under the naïve time-

reversal operation. It is the difference of the number of
events with the final top quark or b-jet above and below
the plane spanned by �p�+ × �p�− in (2.6) and (2.7), and by
�pb × �p�± in (2.8), normalised by the sum of these events.

As can be seen from the numerator of ATf
, in order to

identify the T-odd contributions, we have to identify those
terms in |T |2, (2.3), which contain a triple product of the
form shown in (2.6)–(2.8). Triple products follow from ex-
pressions iεμνρσ aμbνcρdσ , where a, b, c, d are 4-momenta
and spins of the particles involved, which are non-zero only
when the momenta are linearly independent. The expres-
sions iεμνρσ aμbνcρdσ are imaginary and when multiplied
by the imaginary parts of the respective couplings they
yield terms that contribute to the numerator of ATf

, (2.9).
In our process, T-odd terms with ε-tensors are only con-
tained in the spin-dependent contributions to the production,

Σab
P (χ̃0

j t), and in the spin-dependent terms in neutralino de-

cay, Σa
D(χ̃0

j ). It is therefore convenient to split Σab
P (χ̃0

j t)

and Σa
D(χ̃0

j ) into T-odd terms Σ
ab,O
P (χ̃0

j t) and Σ
a,O
D (χ̃0

j )

containing the respective triple products, and T-even terms
Σ

ab,E
P (χ̃0

j t) and Σ
a,E
D (χ̃0

j ) without triple products:

Σab
P

(

χ̃0
j t
)= Σ

ab,O
P

(

χ̃0
j t
)+ Σ

ab,E
P

(

χ̃0
j t
)

,

Σa
D

(

χ̃0
j

)= Σ
a,O
D

(

χ̃0
j

)+ Σ
a,E
D

(

χ̃0
j

)

.
(2.10)

The other spin-dependent contributions Σa
P (χ̃0

j ) and Σb
P (t),

as well as Σb
D(t), are T-even.

When multiplying these terms together and composing
a T-odd quantity, the only terms of |T |2, (2.3), which con-
tribute to the numerator of ATf

are therefore

|T |2 ⊃
3
∑

a,b=1

[

Σ
ab,O
P

(

χ̃0
j t
)

Σ
a,E
D

(

χ̃0
j

)

Σb
D(t)

+ Σ
a,E
P

(

χ̃0
j

)

Σ
a,O
D

(

χ̃0
j

)

+ Σ
ab,E
P

(

χ̃0
j t
)

Σ
a,O
D

(

χ̃0
j

)

Σb
D(t)

]

. (2.11)

The first term in (2.11) is sensitive to the T-odd contributions
from the production of the top and the neutralinos χ̃0

j . Com-
paring (B.15) with (B.27) and (B.40) leads to the following
possible combination of contributing momenta

Σ
ab,O
P

(

χ̃0
j t
)

Σ
a,E
D

(

χ̃0
j

)

Σb
D(t)

∼ εμνρσ sa,μ
(

χ̃0
j

)

pν

χ̃0
j

sb,ρ(t)pσ
t × (p[�+,�−]sa

)(

p[b,W ]sb
)

.

(2.12)

The second term and third terms in (2.11) are only sen-
sitive to T-odd contributions from the neutralino χ̃0

j decay.

The second term depends only on the polarisation of χ̃0
j ,

comparing (B.34) with (B.5) therefore leads to the only pos-
sible combination of momenta

Σ
a,E
P

(

χ̃0
j

)

Σ
a,O
D

(

χ̃0
j

)∼ (pts
a
)× εμνρσ saμpν

χ̃0
j

p
ρ

�−pσ
�+ .

(2.13)
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Since the third term depends on the polarisation of both
fermions, χ̃0

j and t , the possible combinations, comparing
(B.34) with (B.14) and (B.40), are

Σ
ab,E
P

(

χ̃0
j t
)

Σ
a,O
D

(

χ̃0
j

)

Σb
D(t)

∼ (pts
a
)(

pχ̃0
j
sb
)(

sbp[b,W ]
)× εμνρσ saμpν

χ̃0
j

p
ρ

�−pσ
�+

(2.14)

and
(

sasb
)(

sbp[b,W ]
)× εμνρσ saμpν

χ̃0
j

p
ρ

�−pσ
�+ . (2.15)

As can be seen by substituting (B.8)–(B.13) into (B.15)
in Appendix B.1, Σab,O

P (χ̃0
j t) vanishes for the combinations

(ab) = (11), (22), (33), (13), (31), because they contain
cross products of three linearly-dependent vectors. Only for
the remaining combinations, (ab) = (12), (21), (23), (32) ,
do we get a T-odd contribution to the production density
matrix.

Similarly, the expression for the T-even contributions,
Σ

ab,E
P (χ̃0

j t), (B.14) in Appendix B.1, has non-zero compo-
nents for a = 1,3 but vanishes when a = 2. These expres-
sions are multiplied by Σ

a,O
D (χ̃0

j ), (B.34), and therefore only

Σ
1,O
D (χ̃0

j ) and Σ
3,O
D (χ̃0

j ) contribute.
In the following section we derive the three triple prod-

ucts, study their different dependence on phases and provide
explicitly a strategy for determining φAt and φM1 and disen-
tangling their effects.

2.4 Strategy for determining φAt and φM1

2.4.1 Derivation of the triple products

In order to describe the spin of a fermion f in general, we
introduce three four-vectors, sa

μ(f ), a = 1,2,3, such that the
sa and the momentum and mass of the fermion p/m form
an orthonormal set of four-vectors [40]; we have

p · sa = 0, (2.16)

sa · sb = −δab, (2.17)

sa
μsa

ν = −gμν + pμpν

m2
, (2.18)

where repeated indices are implicitly summed over.
Applying (2.18) on (2.12)–(2.15) lead to kinematic ex-

pressions that contain only explicit momenta. Expanding
terms with εμνρσ in time- and space- components gives
scalar triple products between three momenta.

In our process we can classify the terms of (2.11) as fol-
lows.

• The terms of (2.12) lead to a combination between Ttb

and Tb .
• The terms of (2.13) lead only to Tt .

• The terms of (2.14) lead again only to Tt but terms of
(2.15) produce Tt as well as Tb , due to interference effects
between both spin vectors of pt and pχ̃0

j
.

2.4.2 T-odd terms sensitive to Tt

We consider first Tt , (2.6). As this includes the reconstructed
topquark momentum, there are no spin terms from the decay
of the top quark and the contributing terms are the second
and third term in (2.11) as explained in the previous para-
graph. The CP-sensitive terms of the decay density matrix
are given by (B.34)–(B.37) and the contributing kinematical
factor is ga

4 , (B.38),

ga
4 = imkεμνρσ saμpν

χ̃0
j

p
ρ

�−pσ
�+ . (2.19)

We note that ga
4 is purely imaginary. When inserted,

for instance, in (B.36), it is multiplied by the factor
i · Im{f L

�jf
L∗
�k O

′′L∗
kj }, which depends on the phases φM1

(and φμ) and contributes to Σ
a,O
D . Analogous contribu-

tions follow from (B.35) and (B.37). The corresponding T-
even terms of the production density matrix also entering in
(2.11) are obtained from (B.5).

2.4.3 T-odd terms sensitive to Ttb

For the triple product Ttb , (2.8), only the first term in (2.11)
contributes, but the kinematics is complicated by the fact
that we need to include the decay of the t in addition to that
of the χ̃0

2 . This comes from the fact that the kinematical term
that generates the triple product is f ab

4 , (B.16):

f ab
4 = εμνρσ sa,μ

(

χ̃0
j

)

pν

χ̃0
j

sb,ρ(t)pσ
t . (2.20)

As both sa,μ(χ̃0
j ) and sb,ρ(t)pσ

t are contained in this term,
we need to include their decays in order to produce a non-
zero contribution.

This term occurs only once in the t̃ decay ampli-
tude, (B.15), and is multiplied by the complex pre-factor
g2Im(aij b

∗
ij ), (B.17). Both aij and bij contain terms from

the t̃ and χ̃0
j mixing matrices, and so are sensitive to both

the phases φAt and φM1 (and φμ).

2.4.4 T-odd terms sensitive to Tb

The triple product Tb , (2.7), is the most complicated, as it
contains contributions from both the t̃ and χ̃0

2 decays (the
first and third terms in (2.11)). The kinematics is rendered
more complex by the need to multiply each T-odd contri-
bution by the terms from the other two decays. Each T-odd
component is generated through ga

4 and f ab
4 , as for the other

two triple products. As a consequence of having a depen-
dence on both the t̃ and χ̃0

2 decays, Tb is also sensitive to
both phases φAt and φM1 (and φμ).
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2.4.5 Disentangling of effects of φAt and φM1

The T-odd asymmetries, (2.9), are determined by those CP-
violating couplings that are multiplied with the respective
triple product. Under the assumption that φμ is small, the
neutralino sector depends only on φM1 and the stop sec-
tor only on φAt . Since the involved triple-product momenta
show different dependence on the CP-violating phases, as
discussed above, it is possible in principle to disentangle the
effects of φAt and φM1 in our process and to determine the
phases separately.

The decoupling is possible as the triple product Tt ,
can only be produced by the term, Σ

a,E
P (χ̃0

j )Σ
a,O
D (χ̃0

j ); cf.
Sect. 2.4.1. The T-odd contribution in this term comes from
the decay of the χ̃0

j and consequently is only sensitive to the
phase φM1 . Once we have used the triple product Tt to de-
termine the phase φM1 we can then use the value as an input
for the triple products, Ttb and Tb , in order to determine the
phase φAt .

3 Results

3.1 Scenarios

In this section we analyse numerically the various triple-
product asymmetries introduced in (2.6)–(2.8) at both the
parton level and with the inclusion of parton distribution
functions (pdfs) to study the discovery potential at the
LHC. In particular, we study the dependences of these
triple-product asymmetries on the MSSM parameters M1 =
|M1|eiφM1 and At = |At |eiφAt . We also analyse the effects
of these parameters on the masses and branching ratios of
the particles involved in our process.

For our numerical analysis we study in detail at both
the partonic and pdf level a reference scenario, A, where
the χ̃0

1 is a gaugino–higgsino mixture. For comparison, we
also study at the partonic level a non-universal Higgs masses
(NUHM) scenario, B, and a third scenario, C, in which the
χ̃0

2 is higgsino-like. The particle spectra for these scenarios
have been computed with the program SPheno [44]. These
three scenarios have been chosen to have similar masses,
as displayed in Table 3.1, so that the kinematic effects are
similar in each case. We perform our studies using our own
program based on the analytic formulae we have derived for
the various cross sections and spin correlations. The pro-
gram uses the VEGAS [45, 46] routine to perform the multi-
dimensional phase-space integral. We constrain ourselves
to cases where mχ̃0

2
< mχ̃0

1
+ mZ0 and mχ̃0

2
< m

�̃L,R
, so

as to forbid the two-body decay of the χ̃0
2 . The branching

ratios for both processes have been calculated with Her-
wig++ [47, 48].2

The feasibility of measuring these asymmetries at the
LHC depends heavily on the integrated luminosity at the
LHC. For this reason we look closely at the cross section,
σ = σ(gg → t̃1

¯̃t1)×BR(t̃1 → t χ̃0
2 )×BR(χ̃0

2 → χ̃0
1 �+�−)×

BR(t → Wb) and determine the nominal luminosity re-
quired to observe a statistically significant result.

3.2 CP asymmetry at the parton level

3.2.1 Dependence of mχ̃0
1

and AT on φM1 and φAt

We start by discussing the dependence on M1 = |M1|eiφM1

of the parton-level asymmetries for each of the three sce-
narios. In order to see the maximum dependence upon φM1 ,
we use the reconstructed t quark momentum and the triple
product Tt = �pt · ( �p�+ × �p�−). It should be noted from the
following plots that the asymmetry is obviously a CP-odd
quantity that in addition to a measurement of the phase, also
gives the sign, as seen in Fig. 3.1(a). In comparison, using
CP-even quantities, for example the mass, it is not possible
to determine if the phase is positive or negative, as seen in
Fig. 3.1(b).

We see in Fig. 3.1(a) that the biggest asymmetry ap-
pears in scenario A, which attains |ATt |max ≈ 12% when
φM1 ≈ 0.3π . One aspect of the plot that may be surprising
is that the asymmetry is not largest at the maximal value of
the phase (φM1 = π

2 ). This is due to the coupling combina-
tions and interferences and can be seen from the equations
in Sect. 2.4.2. In Fig. 3.1(b), the dependence of the masses
of the neutralinos is shown. It can be seen clearly that the
variations are too small to be used to determine the phase.

In the cases of the two other scenarios shown in
Fig. 3.1(a), the dependence of the asymmetry on the phase
φM1 is similar but slightly smaller. In the case of scenario
B (NUHM), the peak asymmetry is |ATt |max ≈ 9% when
φM1 ≈ 0.3π and in scenario C (Higgsino) it is |ATt |max ≈
7% when φM1 ≈ 0.25π . Again, the asymmetry does not
peak when the phase is maximal.

To study the dependence upon φAt we need to use the
triple products sensitive to this phase, Tb = �pt · ( �p�+ × �p�−)

and Ttb = �pt · ( �pb × �p�±). Figure 3.2(a) shows A Tb
and we

see that the biggest asymmetry again occurs in Scenario A,
but the maximal asymmetry is only about half of |ATt

|max

with |A Tb
|max ≈ 6%. Scenario C produces a very similar

asymmetry to Scenario A, with |A Tb
|max ≈ 5.5%, whereas

2Beyond the Standard Model physics was produced using the algo-
rithm of [49] and, in the running of αEM , the parameterisation of [50]
was used.
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Table 3.1 Parameters and spectra for the three scenarios A, B, C
considered in this paper. We display the input parameters |M1|, M2,
|μ|, tanβ , m

�̃L
and m

�̃R
and the resulting masses mχ̃0

i
, i = 1, . . . ,4,

for (φM1 , φμ) = (0.5π,0) and (0.5π,0.5π). The parameters M2, |μ|

and tanβ in scenario B are chosen as for the scenario SPS1a in [41].
We used mt = 171.2 GeV [42] and the SM value for the top width
Γt ∼ 1.5 GeV [43] for our study. All masses and widths are given in
GeV

Scenario A: Reference B: NUHM - γ C: Higgsino

M1 109 97.6 105

M2 240 184 400

μ 220 316 −190

tanβ 10 20 20

ML 298 366 298

ME 224 341.7 224

MQ3 511 534.5 511

MU3 460 450 460

At −610 −451.4 −610

Mt̃1
396.5 447.8 402.6

Mt̃2
595 609.6 591.6

Mχ̃±
1

177 172.8 186.3

Mχ̃±
2

301.6 346.05 421.1

m
�̃L

302.4 369.8 303.1

m
�̃R

229.2 345.2 229.2

φM1 0 π 0 π 0 π

mχ̃0
1

100.8 106.1 94.8 96.3 99.2 97.6

mχ̃0
2

177.0 171.3 167.1 166.6 186.2 179.8

mχ̃0
3

227.9 231.8 323.8 325.5 199.4 206.2

mχ̃0
4

299.1 297.6 343.4 341.8 419 418.9

Γt̃1
3.88 3.88 3.48 3.48 5.29 5.29

Γχ̃0
2

1.4×10−4 1.4×10−4 2.3×10−5 2.3×10−5 3.0×10−3 3.0×10−3

Fig. 3.1 The asymmetry at
threshold for the production
process gg −→ t̃ t̃ for
scenarios A, B and C for
(a) ATt as a function of φM1 ,
and (b) the masses of the
neutralinos as functions of φM1

the asymmetry in Scenario B is much smaller: |ATb
|max ≈

2.5%. Figure 3.2(b) shows that the general shape of the

asymmetries for A Ttb
is similar to that of A Tb

apart from

a difference in sign and that all the asymmetries are actually

slightly larger. In fact, for Scenario C, the largest asymmetry

is generated using Ttb with A Ttb
≈ 8% when φAt ≈ 0.3π .

In the subsequent analysis, we concentrate on the favour-

able Scenario A, with just a few remarks on the others.

3.2.2 Contour Plots of ATt and ATtb

for Variable M1 and At

If we now lift the restriction of the GUT relation for |M1|,
we can see how the asymmetry varies with |M1| while
leaving all the other parameters the same, for scenario A.
Figure 3.3(a) shows that the asymmetry peaks at |M1| ≈
130 GeV and φM1 ≈ 0.25π when |ATt | ≈ 15%. Impor-
tantly though, the asymmetry can remain above 10% be-
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tween |M1| = 110 GeV and |M1| = 190 GeV, which is most
of the range allowed in this scenario.

By including the decay of the t quark that was pro-
duced in the t̃ decay, we can also study the effect of φAt

on our asymmetries. As the spin-correlation information is
now carried by the t quark, we have to change the triple
product used to measure the asymmetry, (2.9). It is found
that the largest asymmetry can be measured using the triple
product, Ttb = p�+ ·(pt ×pb) where |ATtb

|max ≈ 8.5% when
φAt ≈ 0.5π in Scenario A, as seen in Fig. 3.3(a). It may be
noted that this asymmetry is slightly smaller than those of
[21] that can be reconstructed experimentally. In that paper
scenarios were chosen where the χ̃0

2 decays via a two-body
process, whereas here we concentrate on scenarios where
the χ̃0

2 decays via a three-body process, so to maximise the
sensitivity to φM1 . This phase dependence can also be seen

with the triple product Tb = pb · (p�+ × p�+) although the
asymmetry is found to be smaller here with |ATb

|max ≈ 6%;
see Fig. 3.4(a).

We have also considered the dependence of the asym-
metry on a common trilinear coupling, A = At = Ab = Aτ ,
in scenario A, as shown in Fig. 3.4(b). It can be seen that
the asymmetry is stable for the bulk of the region scanned,
and only decreases near the edge of the acceptable region
for our scenario. The peak is now |ATtb

|max ≈ 9%, when
At ≈ −500 GeV, and the region where |ATtb

| > 8% extends
from At ≈ −650 GeV to At ≈ −250 GeV.

We now consider the effect on the asymmetry of vary-
ing simultaneously both the phases φM1 and φAt . The triple
products Tb = �pb · ( �p�+ × �p�−) and Ttb = �pt · ( �pb × �p�±)

can have contributions from both phases, so we concentrate
on these. For Tb , Fig. 3.5(a) shows that the area of parameter

Fig. 3.2 (a) The asymmetry
ATb

at threshold for the

production process gg −→ t̃ t̃

for scenarios A, B and C, and
(b) the asymmetry ATb

at
threshold, both as functions
of φAt

Fig. 3.3 Contours in scenario A
(in %) of the parton-level
asymmetries (a) ATt for the
triple product
Tt = pt · (p�+ × p�− ), as
functions of the variables M1
and φM1 , and (b) ATtb

for the
triple product
Ttb = p�+ · (pt × pb), as
functions of the variables M1
and φAt

Fig. 3.4 Contours in scenario A
(in %) of the asymmetries
(a) Ab for the triple product
T = pb · (p�− × p�+ ), as
functions of the variables M1
and φAt and (b) Atb for the
triple product
T = p�+ · (pt × pb), as
functions of the common
variables A = At = Ab = Aτ

and φAt
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space where φM1 and φAt constructively interfere is actually
quite small and peaked around φM1 ≈ 0.2π and φAt ≈ 0.5π .
Apart from this area, varying both phases generally re-
sults in a reduction in the asymmetry observed, caused by
the neutralino and squark mixing entering the couplings,
Sect. 2.4.3. Importantly when φM1 ≈ π or φAt ≈ π the
asymmetry vanishes, as it should. Figure 3.5(b) demon-
strates that, for this scenario, φM1 generates virtually no
asymmetry for Tb . However, φM1 can still significantly re-
duce the asymmetry that φAt can produce and, again, when
φM1 ≈ π we see that |ATtb

| ≈ 0 as expected.
If we now modify scenario A slightly by setting |M1| =

160 GeV, this results in a more interesting scenario as the
phases φM1 and φAt can interfere constructively to pro-
duce an asymmetry larger than that seen before. When

φM1 ≈ 0.4π and φAt ≈ 1.8π , we observe a peak asymme-
try, |ATb

| ≈ 7% for the triple product Tb , as seen in Fig. 3.6.

3.3 Dependences of branching ratios on φM1 and φAt

In order to determine whether an asymmetry could be ob-
served at the LHC, we need to calculate the cross section
for the total process. Important factors in the total cross sec-
tion are the branching ratios BR(t̃1 → χ̃0

2 t) (for CP-violating
case see [51]) and BR(χ̃0

2 → χ̃0
1 �+�−) [38]. Both of these

change considerably with φM1 and φAt , altering the statis-
tical significance of any measurement of |ATf

|. Analysing
first the variation with M1, seen in Figs. 3.7 and 3.8(a), we
see that the branching ratio BR(t̃1 → χ̃0

2 t) is indeed sensi-
tive to variation of the phase but can vary more strongly with
|M1|. For example, if φM1 = π when |M1| ≈ 150 GeV then

Fig. 3.5 Contours (in %) of the
asymmetry at the parton level in
scenario A with M1 = 109 GeV
for the triple products
(a) Tb = pb · (p�+ × p�− ) and
(b) Ttb = p�+ · (pb × pt ) for
varying phases φM1 and φAt

Fig. 3.6 Contours (in %) of the
asymmetries in scenario A at the
parton level with
M1 = 160 GeV for the triple
products
(a) Tb = pb · (p�+ × p�− ) and
(b) Ttb = p�+ · (pb × pt ), as
functions of the varying phases
φM1 and φAt

Fig. 3.7 Contours (in %) of
branching ratios in scenario A
as functions of M1 and φM1 :
(a) BR(t̃1 → χ̃0

2 t) and
(b) BR(χ̃0

2 → χ̃0
1 �+�−), � = e

or μ
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BR ≈ 11%, but if we keep the phase the same and change

to |M1| ≈ 180 GeV then BR ≈ 4% (i.e., it drops by almost

a factor of four), as seen in Fig. 3.7(a). The general reduc-

tion of BR(t̃1 → χ̃0
2 t) as M1 increases is to be expected as

the character of χ̃0
2 will be less gaugino-like. Similar large

differences are found in BR(χ̃0
2 → χ̃0

1 �+�−) which varies

between 3% for M1 < 135 GeV and 9% for M1 ≈ 165 GeV

Fig. 3.7(b).

The phase φAt does not enter BR(χ̃0
2 → χ̃0

1 �+�−), but

it can have a large effect on BR(t̃1 → χ̃0
2 t). In scenario

A, we see in Fig. 3.8 that BR ≈ 8% at φAt = 0 but in-

creases to BR ≈ 24% at φAt = π (i.e. a factor of 3 in-

crease). The branching ratio BR(t̃1 → χ̃0
2 t) also has a de-

pendence on |At | an this is shown in Fig. 3.8(b). We see that

if φAt = 0 then the branching vary between, BR ≈ 4% when

|At | ≈ −750 GeV and BR ≈ 12% when |At | ≈ −100 GeV.

In the range of M1 = |M1|eiφM1 and At = |At |eiφAt stud-

ied, we find that BR(t̃1 → χ̃0
2 t) varies between 4% and 24%

and BR(χ̃0
2 → χ̃0

1 �+�−) between 2.5% and 9% for scenario

A. Similar plots can also be produced for scenarios B and

C but are not presented here. It is found that BR(t̃1 → χ̃0
2 t)

varies between 4% and 14% for scenario B and between 8%

and 35% for scenario C. For BR(χ̃0
2 → χ̃0

1 �+�−) the varia-

tion is between 3% and 12% for scenario B and between 2%

and 5% for scenario C.

3.4 Influence of parton distribution functions (pdfs)
on CP asymmetries

So far we have studied the triple-product asymmetries only
when the production process is close to threshold, and the t̃1
pair is produced almost at rest in its centre-of-mass frame;
triple-product effects due to spin effects are usually greatest
close to threshold. However, production at the LHC is not in
general close to threshold, and we must include pdfs in our
analysis to see how an initial boost to the t̃1 affects the asym-
metry. We focus on scenario A: similar results are obtained
in Scenarios B and C.

Figure 3.9(a) shows the asymmetry |ATt | as a function
of the t̃1 momentum, and shows clearly that the asymmetry
is peaked at the threshold for t̃1 production, where the stops
are produced almost at rest, and that it falls sharply as the
energy increases. Figure 3.9(b) shows the total cross section
in 14 TeV collisions at the LHC for gg → t̃1 t̃1 as a function
of the parton–parton centre-of-mass energy, and it demon-
strates that the peak production occurs close to threshold
with a long tail of production at high energy. In addition,
even when production occurs at a low parton–parton centre-
of-mass energy, in the majority of cases one gluon may be
carrying significantly more momentum than the other in the
collision. Consequently the produced t̃1 can have a large
longitudinal component to its momenta. Both these factors
mean that the asymmetry observed at the LHC will be sub-
stantially smaller than if the all t̃1 were produced at thresh-

Fig. 3.8 Contours (in %) of the
branching ratio BR(t̃1 → χ̃0

2 t),
in scenario A as functions of
varying (a) M1 and φAt and
(b) the common trilinear
coupling At = Ab = Aτ and the
phase of the top-quark trilinear
coupling φAt

Fig. 3.9 (a) Asymmetry ATt

for scenario A as a function of
the t̃ momentum. (b) Total cross
section for scenario A for
gg −→ t̃ t̃ as a function of the
parton–parton centre-of-mass
energy
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Fig. 3.10 Integrated
asymmetries with parton density
functions included in the
production process. The dotted
and dashed lines indicate the
asymmetry required in order to
observe a 1σ deviation from
zero with the indicated
luminosities; see the text:
(a) Tt = pt · (p�+ × p�− ) in
scenario A as a function of φM1

with M1 = 130 GeV, and
(b) Ttb = p�+ · (pt × pb) in
scenario A as a function of φAt

with M1 = 109 GeV

old.3 In should be noted that similar results were found for
all asymmetries and scenarios, and this ‘dilution’ factor is
always present.

We use the MRST 2004LO pdf set [52] in our analysis
of the asymmetry, and plot the integrated asymmetry |ATt |
as a function of φM1 and φAt at the LHC in Fig. 3.10(a), as
the solid line. We see that the inclusion of the pdfs reduces
the asymmetry by about a factor of four in this case. This
reduction is unsurprising, given the reduction in asymmetry
when one moves away from threshold shown in Fig. 3.9(a),
though the dilution factor does depend on the scenario.4

Using the production cross sections and branching ratios
we can then estimate the integrated luminosity required to
observe an asymmetry at the LHC. We assume that NT ±,
the numbers of events where T is positive and negative as in
(2.9), are binomially distributed, giving the following statis-
tical error [53]:

Δ(AT )stat = 2
√

ε(1 − ε)/N, (3.1)

where ε = NT +/(NT + + NT −) = 1
2 (1 + AT ), and N is the

number of selected events. This can be rearranged to give
the required number of events for a desired significance.

Figures 3.10(a), (b) and 3.11(a) show the expected levels
of the integrated asymmetries in scenario A with pdf effects
included (solid line) together with dotted and dashed lines
showing the level of asymmetry one would need with the
corresponding integrated luminosity in order to obtain a sta-
tistical error AT > Δ(AT ). In other words, the asymmetry
could only be seen at the level of 1σ where the solid line
is above the relevant dotted or dashed line. For example, in
scenario A after 100 fb−1, the asymmetry could only be seen

3Both these effects could be overcome if one could measure the stop–
stop invariant mass and tag the stop momenta, but this is unlikely to be
possible with great accuracy.
4These results have been checked independently using Her-
wig++ [47, 48] with three-body spin correlations included, a feature
that is currently not available in an official release of the code, but will
be included in a future version.

Fig. 3.11 Integrated asymmetries with parton density functions in-
cluded in the production process. The dotted and dashed lines indicate
the asymmetry required in order to observe a 1σ deviation from zero
with the indicated luminosities; see the text: (a) Tb = pb · (p�+ × p�− )

in scenario A as a function of φAt with M1 = 109 GeV

for a small area of parameter space around φM1 = 0.35π and
1.7π . Figures 3.10(a) and (b) show that even if φM1 or φAt

has a value that produces a maximal asymmetry, we require
a substantial integrated luminosity if we are to find a statis-
tically significant result. In addition, it must be noted that
we have not included any detector effects into our analysis,
and one could expect that the required integrated luminosity
would rise substantially after the inclusion of backgrounds,
trigger efficiencies, etc. A measurement of an asymmetry
with an accuracy of a few % might be possible with 100 fb−1

of integrated luminosity, but it would probably be insuffi-
cient to constrain significantly the model parameter space.
However, an interesting measurement could be made with
an integrated luminosity above 300 fb−1, which is targeted
by the proposed LHC luminosity upgrade.

3.5 Determination of the CP-violating phases

As we have shown, it will be challenging to determine the
phases φM1 and φAt in our process using the triple-product
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asymmetries alone. However, it would be very worthwhile,
as a non-zero measurement of a T-odd asymmetry would
provide unique evidence of CP violation. In the rest of this
section, we examine briefly the potential for a measurement
using other variables, again concentrating on scenario A.

3.5.1 Observables: masses, cross sections
and CP asymmetries

Figure 3.2(b) showed how the masses of the χ̃0
i s vary with

φM1 and Fig. 3.12(a) shows how the masses of the t̃i vary
with φAt in scenario A. Unfortunately, the variations in both
of these observables are only about 1–2 GeV, which are sig-
nificantly smaller than the experimental errors expected for
these measurements. A far more accurate measurement at
the LHC will be the mass difference between χ̃0

2 and χ̃0
1 , as

this can be determined in our scenario with a clear dilepton
end-point. The accuracy of this measurement is expected to
be <1% and, if we assume that M2 can be determined to
5% [54], we find the regions plotted in Fig. 3.12(b). At the
smaller values allowed for M1 in scenario A, we see that this
observable does not depend sensitively enough on φM1 for a
measurement to become possible. However, as M1 increases
we see that the sensitivity to φM1 becomes much clearer. Im-
portantly, in scenario A, it is only possible to have a mass
difference, χ̃0

2 − χ̃0
1 � 40 GeV if φM1 is present.

3.5.2 Inclusion of branching ratios

Other observables sensitive to the phases φM1 and φAt are
the branching ratios BR(χ̃0

2 → χ̃0
1 �+�−) and BR(t̃1 → χ̃0

2 t),
as discussed in Sect. 3.3. As is the case for the masses,
though, our current expectation of the accuracy of this mea-
surement at the LHC looks insufficient to constrain the
phases. Figure 3.13(a) shows in the context of scenario A
that, if a measurement BR(χ̃0

2 → χ̃0
1 �+�−) = 0.4 is made

and we assume that the accuracy at the LHC is 50% (Δ1),
then the constraints on M1 and φM1 are rather weak. How-
ever, if the accuracy could be improved to 10% (Δ2), a de-
termination of M1 and φM1 looks possible if this analysis
is combined with information from the χ̃0

2 , χ̃0
1 mass dif-

ference and that of the triple-product correlations. For the
branching ratio, BR(t̃1 → χ̃0

2 t), the conclusion is similar, as
seen in Fig. 3.13(b). With a measurement at 50% (Δ1), we
again see that a determination of the CP-violating parameter
is not possible but, if a measurement can be made with an
accuracy of 10% (Δ2), then a determination of φAt would
be more plausible.

Thus, we may be able to pin the model parameters down
with greater accuracy by combining information on the CP-
violating asymmetries with this and other information.

Fig. 3.12 (a) The mass of the
stop squarks t̃j , j = 1,2 as
functions of φAt /π , and
(b) contour plot showing the
areas of the (M1, φM1 )

parameter plane consistent with
a mass difference between χ̃0

2
and χ̃0

1 of 20, 40 and 60 GeV
respectively. The bands assume
a 1% error in experimental
measurement of the mass
difference and a 5% error in M2

Fig. 3.13 Parameter space
allowed when the experimental
accuracy of the branching ratio
measurement is 50% (Δ1) or
10% (Δ2) for
(a) BR(χ̃0

2 → χ̃0
1 �+�−) = 0.04

and (b) BR(t̃1 → χ̃0
2 t) = 0.1
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4 Conclusions

We have studied direct stop production followed by the de-
cay t̃1 → t χ̃0

2 , χ̃0
2 → �+�−χ̃0

1 , where the latter is a three-
body decay and provide compact analytical expressions for
the amplitude and phase space. We have specifically concen-
trated on measuring the CP-violating phases of the parame-
ters M1 and At .

We have provided a thorough analysis of the contribu-
tions to this process which lead to non-zero asymmetries in
the parameters Tt , Tb and Ttb formed from triple products
of reconstructible final-state particles. These are sensitive to
different combinations of the phases mentioned above. We
studied three spectra which had different neutralino charac-
teristics at the parton level and also studied the (large) effect
of including pdfs which had previously only been roughly
estimated in the literature.

We found that with the design integrated luminosity of
the LHC of 100 fb−1, the statistical errors would probably
remain too great to distinguish a non-zero asymmetry mea-
surement from zero for most of the ranges of φM1 and φAt ,
and we recall that this initial study did not include detector
or background effects. However, with a luminosity upgrade,
the accuracy will improve and it could be possible either to
measure a non-zero value or else to provide limits on the
possible phases.

Triple products are not the only variables sensitive to the
phases of the parameters. We found that a good measure-
ment of the mass difference between the χ̃0

2 and χ̃0
1 neu-

tralinos could constrain significantly the (M1,φM1 ) parame-
ter space. It is possible that measurements of the two branch-
ing ratios BR(t̃1 → χ̃0

2 t) and BR(χ̃0
2 → χ̃0

1 �+�−) could also
constrain both φM1 and φAt , although this is heavily depen-
dent on the experimental accuracy achieved. However, the
disadvantage of both mass differences and branching ratios
is that a non-zero value can potentially be faked by other
values of the real parameters. This is in contrast to the asym-
metries from triple products which are uniquely due to CP
violation. Therefore, even though these will be challenging
measurements at the LHC, they are worthwhile experimen-
tal objectives.
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Appendix A: Lagrangian and couplings

The interaction Lagrangian terms for the production pro-
cesses are

Lggg = gs∂
νGa

μgμρfabcG
b
νG

c
ρ, (A.1)

Lq̃q̃g = igsT
a
rsδijG

a
μq̃∗

jr

↔
∂μ q̃is , (A.2)

Lq̃q̃gg = 1

2
g2

s

(
1

3
δab + dabcT

c

)

Ga
μGbμq̃∗

j q̃i . (A.3)

The interaction Lagrangian terms for χ̃0
2 decay are

LZ0�+�− = − g

cosΘW

Zμ�̄γ μ[L�PL + R�PR]�, (A.4)

LZ0χ̃0
mχ̃0

n
= 1

2

g

cosΘW

Zμ
¯̃χ0
mγ μ

[

O ′′L
mnPL + O ′′R

mnPR

]

χ̃0
n ,

(A.5)

L
��̃χ̃0

k
= g�̄

(

a�̃
jkPR + b�̃

jkPL

)

χ̃0
k �j + h.c., (A.6)

where the couplings a�̃
jk and b�̃

jk are given by

a�̃
ik =

2
∑

n=1

(

R�̃
in

)∗A�
kn, b�̃

ik =
2
∑

n=1

(

R�̃
in

)∗B�
kn. (A.7)

Here R�̃
in is the mixing matrix of the squarks and

A�
k =

(
f �

Lk

h�
Rk

)

, B�
k =

(
h�

Lk

f �
Rk

)

, (A.8)

with

f �
Lk = −√

2 e� sin θWNk1 − √
2
(

T3� − e� sin2 θW

) Nk2

cos θW

,

(A.9)

f �
Rk = −√

2 e� sin θW

(

tan θWN∗
k2 − N∗

k1

)

, (A.10)

h�
Lk = −Y�

(

N∗
k3 sinβ − N∗

k4 cosβ
)

= (h�
Rk

)∗
, (A.11)

O ′′L
mn = −1

2

(

Nm3N
∗
n3 − Nm4N

∗
n4

)

cos 2β

− 1

2

(

Nm3N
∗
n4 + Nm4N

∗
n3

)

sin 2β, (A.12)

O ′′R
mn = −O ′′L∗

mn , (A.13)

L� = T3� − e� sin2 ΘW, R� = −e� sin2 ΘW, (A.14)

where PL,R = 1
2 (1∓γ5), Yt = mt/(

√
2mW sinβ). Here, g is

the weak coupling constant (g = e/ cosΘW , e > 0), e� and
T3� are the charge (in units of e) and the third component of
the weak isospin of the fermion �, ΘW is the weak mixing
angle and tanβ = v2/v1 is the ratio of the vacuum expec-
tation values of the Higgs fields. The unitary (4 × 4) ma-
trix Nmk that diagonalises the complex symmetric neutralino
mass matrix is given in the basis (γ̃ , Z̃0, H̃ 0

1 , H̃ 0
2 ) by [55]:
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N =

⎛

⎜
⎜
⎝

M1e
iφM1 c2

W + M2s
2
W (M1e

iφM1 − M2)sW cW 0 0
(M1e

iφM1 − M2)sW cW M1e
iφM1 c2

W + M2s
2
W MZ 0

0 MZ μeiφμs2β −μeiφμc2β

0 0 −μeiφμc2β −μeiφμs2β

⎞

⎟
⎟
⎠

, (A.15)

where the abbreviations sW = sin θW , cW = cos θW , s2β =
sin 2β, c2β = cos 2β have been used.

The interaction Lagrangian for t̃ decay is

Lqq̃χ̃0
k

= gq̄
(

a
q̃
ikPR + b

q̃
ikPL

)

χ̃0
k q̃i + h.c., (A.16)

where the couplings a
q̃
ik and b

q̃
ik are given by

a
q̃
ik =

2
∑

n=1

(

Rq̃
in

)∗Aq
kn, b

q̃
ik =

2
∑

n=1

(

Rq̃
in

)∗Bq
kn. (A.17)

Here Rq̃
in is the mixing matrix of the squarks and

Aq
k =

(
f

q
Lk

h
q
Rk

)

, Bq
k =

(
h

q
Lk

f
q
Rk

)

, (A.18)

with

f
q
Lk = −√

2 eq sin θWNk1 − √
2
(

T3q − eq sin2 θW

) Nk2

cos θW

,

(A.19)

f
q
Rk = −√

2 eq sin θW

(

tan θWN∗
k2 − N∗

k1

)

, (A.20)

ht
Lk = Yt

(

N∗
k3 sinβ − N∗

k4 cosβ
)

= (ht
Rk

)∗
. (A.21)

We also use the following relations from [21]. The left-right
mixing of the stop squarks is described by a hermitian 2 × 2
mass matrix which reads as follows in the basis (t̃L, t̃R):

Lt̃
M = −(t̃†

L, t̃
†
R

)

(

M2
t̃LL

e−iφt̃ |M2
t̃LR

|
eiφt̃ |M2

t̃LR
| M2

t̃RR

)(

t̃L

t̃R

)

,

(A.22)

where

M2
t̃LL

= M2
Q̃

+
(

1

2
− 2

3
sin2 ΘW

)

cos 2β m2
Z + m2

t , (A.23)

M2
t̃RR

= M2
Ũ

+ 2

3
sin2 ΘW cos 2β m2

Z + m2
t , (A.24)

M2
t̃RL

= (M2
t̃LR

)∗ = mt(At − μ∗ cotβ), (A.25)

φt̃ = arg[At − μ∗ cotβ]. (A.26)

Here tanβ = v2/v1 with v1(v2) being the vacuum expec-
tation value of the Higgs field H 0

1 (H 0
2 ), mt is the mass of

the top quark and ΘW is the weak mixing angle, μ is the
Higgs–higgsino mass parameter and M

Q̃
, M

Ũ
,At are the

soft SUSY-breaking parameters of the stop squark system.

The mass eigenstates t̃i are (t̃1, t̃2) = (t̃L, t̃R)Rt̃ T with

Rt̃ =
(

eiφt̃ cos θt̃ sin θt̃

− sin θt̃ e−iφt̃ cos θt̃

)

, (A.27)

where

cos θt̃ =
−|M2

t̃LR
|

√

|M2
t̃LR

|2 + (m2
t̃1

− M2
t̃LL

)2
,

sin θt̃ =
M2

t̃LL
− m2

t̃1
√

|M2
t̃LR

|2 + (m2
t̃1

− M2
t̃LL

)2
.

(A.28)

The mass eigenvalues are

m2
t̃1,2

= 1

2

((

M2
t̃LL

+ M2
t̃RR

)

∓
√
(

M2
t̃LL

− M2
t̃RR

)2 + 4|M2
t̃LR

|2
)

. (A.29)

We note that we have φt̃ ≈ φAt for |At | � |μ| cotβ .

Appendix B: Explicit expressions
for the squared amplitude

B.1 Neutralino production t̃i → χ̃0
j

Here we give the analytic expression for the production den-
sity matrix:

∣
∣M
(

t̃i → χ̃0
j t
)∣
∣
2 = P

(

χ̃0
j t
)+Σa

P

(

χ̃0
j

)+Σb
P (t)+Σab

P

(

χ̃0
j t
)

,

(B.1)

whose spin-independent contribution reads

P
(

χ̃0
j t
) = g2

2

{(|aij |2 + |bij |2
)(

ptpχ̃0
j

)

− 2mtmχ̃0
j
Re
(

aij b
∗
ij

)}

, (B.2)
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where pt and pχ̃0
k

denote the four-momenta of the t-quark

and the neutralino χ̃0
k . The coupling constants can be sim-

plified and shown to be
(|aij |2 + |bij |2

)

= ∣∣ht
Rj

∣
∣2 + cos2 θt̃

∣
∣f t

Lj

∣
∣2 + sin2 θt̃

∣
∣f t

Rj

∣
∣2

+ 2 sin θt̃ cos θt̃Re
[

e−iφt̃ ht∗
Rj

(

f t
Rj + f t

Lj

)]

, (B.3)

Re(aij b
∗
ij ) = cos2 θt̃Re

(

f t
Rjh

t
Rj

)+ sin2 θt̃Re
(

f t∗
Rjh

t
Rj

)

+ 1

2
sin 2θt̃Re

[

eiφt̃
∣
∣ht

Rj

∣
∣2 + e−iφt̃ f t

Ljf
t∗
Rj

]

,

(B.4)

where φt̃ is given in (A.26).
The spin-dependent contributions are T-even and are

given by

Σa
P

(

χ̃0
2

)= g2

2

{(|bij |2 − |aij |2
)

mχ̃0
j

(

pts
a
(

χ̃0
j

))}

, (B.5)

Σb
P (t) = g2

2

{(|bij |2 − |aij |2
)

mt

(

pχ̃0
j
sb(t)

)}

, (B.6)

where sa(χ̃0
j ) (sb(t)) denote the spin-basis vectors of the

neutralino χ̃0
j (t-quark). Again the coupling constant can be

simplified as
(|bij |2 − |aij |2

)

= cos 2θt̃

∣
∣ht

Rj

∣
∣
2 − cos2 θt̃

∣
∣f t

Lj

∣
∣
2 + sin2 θt̃

∣
∣f t

Rj

∣
∣
2

− 2 sin θt̃ cos θt̃Re
[

e−iφt̃ ht∗
Rj

(

f t
Rj + f t

Lj

)]

. (B.7)

The three spin-basis four-vectors s1, s2 and s3 form a
right-handed system and provide, together with the momen-
tum, an orthogonal basis system. They are chosen as:

s1(χ̃0
j

)=
(

0,

( �pχ̃0
j

× �pt̃i
) × �pχ̃0

j

|( �pχ̃0
j

× �pt̃i
) × �pχ̃0

j
|
)

, (B.8)

s2(χ̃0
j

)=
(

0,

�pχ̃0
j

× �pt̃i

| �pχ̃0
j

× �pt̃i
|
)

, (B.9)

s3(χ̃0
j

)= 1

mχ̃0
j

(

| �pχ̃0
j
|,

Eχ̃0
j

| �pχ̃0
j
| �pχ̃0

j

)

. (B.10)

The spin system for the top quark has been chosen analo-
gously:

s1(t) =
(

0,

( �pt × �pχ̃0
j
) × �pt

|( �pt × �pχ̃0
j
) × �pt |

)

, (B.11)

s2(t) =
(

0,

�pt × �pχ̃0
j

| �pt × �pχ̃0
j
|
)

, (B.12)

s3(t) = 1

mt

(

| �pt |, Et

| �pt | �pt

)

, (B.13)

and Et and Eχ̃0
j

denote the energies of the top quark and the

neutralino χ̃0
j , respectively.

The terms that depend simultaneously on the spin of the
top quark and of the neutralino can be split into T-even,
Σ

ab,E
P (χ̃0

2 t), and T-odd, Σ
ab,O
P (χ̃0

2 t), contributions:

Σ
ab,E
P

(

χ̃0
2 t
) = g2

2

{

2Re(aij b
∗
ij )
[(

sa
(

χ̃0
j

)

pt

)(

sb(t)pχ̃0
j

)

− (ptpχ̃0
j
)
(

sa
(

χ̃0
j

)

sb(t)
)]

+ mtmχ̃0
j

(

sa
(

χ̃0
j

)

sb(t)
)(|aij |2 + |bij |2

)}

,

(B.14)

Σ
ab,O
P

(

χ̃0
2 t
) = −g2Im(aij b

∗
ij )f

ab
4 , (B.15)

where the T-odd kinematical factor is given by

f ab
4 = εμνρσ sa,μ

(

χ̃0
j

)

pν

χ̃0
j

sb,ρ(t)pσ
t , (B.16)

and the coupling constant by

Im(aij b
∗
ij ) = cos2 θt̃ Im

(

f t
Rjh

t
Rj

)+ sin2 θt̃ Im
(

f t∗
Rjh

t
Rj

)

+ 1

2
sin 2θt̃ Im

[

eiφt̃
∣
∣ht

Rj

∣
∣
2

+ e−iφt̃ f t
Ljf

t∗
Rj

]

. (B.17)

B.2 Neutralino three-body decay χ̃0
j → χ̃0

k �+�−

Here we give the analytical expressions for the different con-
tributions to the decay density matrix for the three-body de-
cay, where we sum over the spins of the final-state parti-
cles [39]. The contributions independent of the polarisation
of the neutralino χ̃0

j

D
(

χ̃0
j

) = D(ZZ) + D(Z�̃L) + D(Z�̃R) + D(�̃L�̃L)

+ D(�̃R�̃R), (B.18)

are given by

D(ZZ) = 8
g4

cos4 ΘW

∣
∣Δ(Z)

∣
∣2
(

L2
� + R2

�

)

× [∣∣O ′′L
kj

∣
∣
2
(g1 + g2) + (ReO

′′L
kj

)2

− 〈(ImO
′′L
kj

)2)
g3!
]

, (B.19)
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D(Z�̃L) = 4
g4

cos2 ΘW

L�Re
{

Δ(Z)
[

f L
�jf

L∗
�k Δt∗(�̃L)

× (2O
′′L
kj g1 + O

′′L∗
kj g3

)

+ f L∗
�j f L

�kΔ
u∗(�̃L)

(

2O
′′L∗
kj g2 + O

′′L
kj g3

)]}

,

(B.20)

D(�̃L�̃L) = 2g4[
∣
∣f L

�j

∣
∣2
∣
∣f L

�k

∣
∣2
(∣
∣Δt(�̃L)

∣
∣2g1 + ∣∣Δu(�̃L)

∣
∣2g2

)

+ Re
{(

f L∗
�j

)2(
f L

�k

)2
Δt(�̃L)Δu∗(�̃L)

}

g3
]

,

(B.21)

where Δ(Z) and Δt,u(�̃L) denote the propagators of the vir-
tual particles in the direct channel and in both crossed chan-
nels (labelled t, u, cf. Fig. 2.2).

The quantities D(Z�̃R),D(�̃RẽR) can be derived from
(B.20), (B.21) by the substitutions

L� → R�, Δt,u(�̃L) → Δt,u(�̃R),

O
′′L
kj → O

′′R
kj , f L

�j,k → f R
�j,k.

(B.22)

The kinematical factors are

g1 = (pχ̃0
k
p�−)(pχ̃0

j
p�+), (B.23)

g2 = (pχ̃0
k
p�+)(pχ̃0

j
p�−), (B.24)

g3 = mjmk(p�−p�+). (B.25)

We can split the terms depending on the polarisation of the
neutralino into T-even and T-odd contributions:

Σa
D

(

χ̃0
j

)= Σ
a,E
D

(

χ̃0
j

)+ Σ
a,O
D

(

χ̃0
j

)

. (B.26)

The T-even contributions depending on the polarisation of
the decaying neutralino χ̃0

j

Σ
a,E
D

(

χ̃0
j

) = Σ
a,E
D (ZZ) + Σ

a,E
D (Z�̃L) + Σ

a,E
D (Z�̃R)

+ Σ
a,E
D (�̃L�̃L) + Σ

a,E
D (�̃R�̃R) (B.27)

are

Σ
a,E
D (ZZ) = 8

g4

cos4 ΘW

∣
∣Δ(Z)

∣
∣2
(

R2
� − L2

�

)

× [− [(ReO
′′L
kj

)2 − (ImO
′′L
kj

)2]
ga

3

+ ∣∣O ′′L
kj

∣
∣
2(

ga
1 − ga

2

)]

, (B.28)

Σ
a,E
D (Z�̃L) = 4g4

cos2 ΘW

L�Re
{

Δ(Z)
[

f L
�jf

L∗
�k Δt∗(�̃L)

× (−2O
′′L
kj ga

1 + O
′′L∗
kj ga

3

)

+ f L∗
�j f L

�kΔ
u∗(�̃L)

(

2O
′′L∗
kj ga

2 + O
′′L
kj ga

3

)]}

,

(B.29)

Σ
a,E
D (�̃L�̃L) = 2g4[

∣
∣f L

�j

∣
∣2
∣
∣f L

�k

∣
∣2
[∣
∣Δu(�̃L)

∣
∣2ga

2

− ∣∣Δt(�̃L)
∣
∣
2
ga

1

]

+ Re
{(

f L∗
�j

)2(
f L

�k

)2
Δt(�̃L)Δu∗(�̃L)ga

3

}]

,

(B.30)

where the contributions Σ
a,E
D (Z�̃R),Σ

a,E
D (�̃R�̃R) are de-

rived from (B.29), (B.30) by applying the substitutions in
(B.22) and in addition ga

1,2,3 → −ga
1,2,3.

The kinematical factors are

ga
1 = mj(pχ̃0

k
p�−)

(

p�+sa
)

, (B.31)

ga
2 = mj(pχ̃0

k
p�+)

(

p�−sa
)

, (B.32)

ga
3 = mk

[

(pχ̃0
j
p�+)

(

p�−sa
)− (pχ̃0

j
p�−)

(

p�+sa
)]

. (B.33)

The T-odd contributions depending on the polarisation of the
decaying neutralino χ̃0

j

Σ
a,O
D

(

χ̃0
j

) = Σ
a,O
D (ZZ) + Σ

a,O
D (Z�̃L) + Σ

a,O
D (Z�̃R)

+ Σ
a,O
D (�̃L�̃L) + Σ

a,O
D (�̃R�̃R). (B.34)

are

Σ
a,O
D (ZZ) = 8

g4

cos4 ΘW

∣
∣Δ(Z)

∣
∣
2(

L2
� − R2

�

)

× [2Re
(

O
′′L
kj

)

Im
(

O
′′L
kj

)

iga
4

]

, (B.35)

Σ
a,O
D (Z�̃L) = 4g4

cos2 ΘW

L�

× Re
{

Δ(Z)
[−f L

�jf
L∗
�k O

′′L∗
kj Δt∗(�̃L)

+ f L∗
�j f L

�kO
′′L
kj Δu∗(�̃L)

]

ga
4

}

, (B.36)

Σ
a,O
D (�̃L�̃L) = 2g4Re

{(

f L∗
�j

)2(
f L

�k

)2
Δt(�̃L)Δu∗(�̃L)ga

4

}

,

(B.37)

where the contributions Σ
a,O
D (Z�̃R),Σ

a,O
D (�̃R�̃R) are de-

rived from (B.29), (B.30) by applying the substitutions in
(B.22). The kinematical factor is

ga
4 = imkεμνρσ saμpν

χ̃0
j

p
ρ

�−pσ
�+ . (B.38)

B.3 Top decay t → W+b

We provide analytical expressions for the 2-body decay of
the top quark into a W -boson and the final-state bottom
quark:

D(t) = g2

4

{

m2
t − 2m2

W + m4
t

m2
W

}

. (B.39)
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The spin-dependent contribution is T-even and reads

Σb
D(t) = −g2

2
mt

{
(

sb(t)pb

)+ m2
t − m2

W

m2
W

(

sb(t)pW

)
}

.

(B.40)

Appendix C: Kinematics

C.1 Phase space

The complete cross section for the process can be decom-
posed into the production cross section and the branching
ratios of the subsequent decays:

dσTotal

= dσ
(

gg → t̃1 t̃1
) Et̃1

mt̃1
Γt̃1

dΓ
(

t̃1 → t χ̃0
2

)

×
Eχ̃0

2

mχ̃0
2
Γχ̃0

2

dΓ
(

χ̃0
2 → χ̃0

1 l+l−
) Et

mtΓt

dΓ (t → W+b) ,

(C.1)

where the factors E/mΓ come from the use of the narrow-
width approximation for the propagators of the t̃ , χ̃0

2 and t .
This approximation is valid for (Γ/m)2  1, which is sat-
isfied for Γt ∼ 1.5 GeV [43] and Γt̃ ∼ 4 GeV. It is also triv-
ially satisfied in the case of Γχ̃0

2
∼ 10−4 where the width

is small because only the three-body decay is kinematically
possible.

We have:

dΓ
(

t̃1 → t χ̃0
2

)= 2

Et̃1

P
(

χ̃0
2 t
)

dΦt̃ , (C.2)

dΓ
(

χ̃0
2 → χ̃0

1 l+l−
)= 1

4Eχ̃0
2

D
(

χ̃0
2

)

dΦχ̃0
2
, (C.3)

dΓ (t → W+b) = 1

4Et

D(t) dΦt , (C.4)

where the phase-space factors in the laboratory system are
given by

dΦt̃ = 1

(2π)2

|p±
χ̃0

2
|2

2|Et̃ |p±
χ̃0

2
| − E±

χ̃0
2
|pt̃ | cos θt̃ |

d�t̃ , (C.5)

dΦχ̃0
2

= 1

8(2π)5

El+

||pχ̃0
2
| cos θl+ − Eχ̃0

1
− El+ − El− cos α|

El−dEl−d�l+d�l− , (C.6)

dΦt = 1

(2π)2

Eb

2||pt | cos θb − EW − Eb|d�b. (C.7)

There is a subtlety in the phase-space calculation, namely
that there can be two solutions for pχ̃0

2
. If |pχ̃0

2
| < p0

where p0 = λ
1
2 (m2

t̃
,m2

χ̃0
2
,m2

t )/2mχ̃0
2
, then the decay angle,

θt̃ = �(pt̃ ,pt ), is unconstrained and there is only one solu-
tion. However, if pχ̃0

2
> p0, then the angle is constrained by

sin θmax
t̃

= p0/|pχ̃0
2
| and there are two physical solutions

|pχ̃0
2
| =

(m2
t̃
+ m2

χ̃0
2

− m2
θ )|pt̃ | cos θt̃ ± Et̃

√

λ(m2
t̃
,m2

χ̃0
2
,m2

t ) − 4|pt̃ |2 m2
χ̃0

2
(1 − cos2 θt̃ )

2|pt̃ |2(1 − cos2 θt̃ ) + 2m2
t̃

. (C.8)

For the region of phase space where two solutions exist the
cross section becomes a summation of the solutions for each
of the subsequent decay chains.

C.2 Integration limits

When evaluating the phase-space integral at the parton level,
kinematical limits need to be determined on some of the
variables and these are listed below.

If |pχ̃0
2
| < p0, where p0 = λ

1
2 (m2

t̃
,m2

χ̃0
2
,m2

t )/2mχ̃0
2
, there

are two solutions for pχ̃0
2
, (C.8), and the decay angle of the

t̃ is constrained by

sin θt̃ <

λ
1
2 (m2

t̃
,m2

χ̃0
2
,m2

t )

2|pt̃ |mχ̃0
2

. (C.9)

The three-body-decay phase space of the χ̃0
2 also has limits:

E�− <
mχ̃0

2
− mχ̃0

1

2(Eχ̃0
2

− |pχ̃0
2
|) , (C.10)

cos θ�− <
2Eχ̃0

2
E�− + mχ̃0

1
− mχ̃0

2

2E�−|pχ̃0
2
| . (C.11)
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