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Abstract 
A multi-timescale analysis of the backbone dynamics of HET-s (218-289) fibrils is 

described based on multiple site-specific R1 and R1ρ data sets and S2 measurements via 

REDOR for most backbone 15N and 13Cα nuclei. 15N and 13Cα data are fitted with motions at 

three timescales. Slow motion is found, indicating a global fibril motion. We further investigate 

the effect of 13C–13C transfer in measurement of 13Cα R1. Finally, we show that it is necessary 

to go beyond the Redfield approximation for slow motions in order to obtain accurate numerical 

values for R1ρ. 
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Introduction 
Obtaining atomic-resolution structures of proteins has become an important component 

of protein studies, in order to understand the correlation between structure and function. 

However, proteins exhibit motions on multiple timescales, making a static structure an 

incomplete picture. Molecular motion plays a critical role in the behavior of proteins: slow 

motions may indicate large-scale rearrangement of a protein, for example, as a result of a 

signaling process, or binding of substrates to enzymes. Faster motions are indicative of more 

localized motion, giving insight into local protein flexibility. Site-specific characterization of 

protein motions across multiple timescales complements atomic-resolution structure, giving 

information about both slow, concerted motions and fast, local motions. NMR spectroscopy is 

an ideal technique to study motion across many timescales; exchange spectroscopy (Jeener et 

al. 1979), relaxation-dispersion experiments (McConnell 1958), and spin-lattice relaxation 

(Allerhand et al. 1971) cover motions with correlation times from ~1 second to ~1 picosecond. 

Site-specific analysis of protein dynamics utilizing solid-state NMR can typically provide 

information on up to 2-3 timescales of motion (Zinkevich et al. 2013), each characterized by a 

timescale and an amplitude, although in principle it is possible to use more complex analyses. 

To perform site-specific analysis of dynamics, the following measurements are commonly 

combined: 1) measurement of incompletely-averaged anisotropic interactions (typically one-

bond dipolar couplings), 2) measurement of several longitudinal relaxation-rate constants 

(typically R1 or NOE), and 3) measurement of transverse relaxation times (typically R1ρ or 

CSA-dipole cross-correlated cross-relaxation) (Chevelkov et al. 2007a; Krushelnitsky et al. 

2010; Lewandowski et al. 2010; Skrynnikov 2007). Both R1 and R1ρ measurements can be 

attributed to modulation of some 1H–X coupling and/or CSA of nucleus X at various timescales 

(R1 typically provides information for τc < 100 ns and R1ρ for τc > 10 ns, see SI Figure 1), 

whereas incompletely averaged dipolar couplings provide the total amplitude of motion 

(characterized by its order parameter, S2) of the 1H–X coupling. Therefore, one can 

characterize protein dynamics by collecting some or all of these parameters site specifically 

and then fitting them to a dynamic model.  

To date, a variety of studies have investigated dynamics information using solid-state 

NMR. Chevelkov et al. combined solution and solid-state NMR data to investigate nanosecond 

motion with the extended model-free approach (Chevelkov et al. 2007b; Clore et al. 1990). 

Chevelkov et al. and Schanda et al. used the extended model-free approach  in solid-state 
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NMR, obtaining information on two timescales of motion, with correlation times in the nano- 

and picosecond ranges. (Chevelkov et al. 2009; Schanda et al. 2010). Zinkevich et al. pushes 

this approach towards its limit, using combined R1ρ, R1, and S2 measurements for 1H–15N spin 

pairs, and fitting up to three motions to the data (amplitudes were determined for three 

motions, although correlation times could only be determined for two of three motions for many 

residues), while also considering temperature dependence to calculate the activation energy of 

the motions, utilizing the Arrhenius relationship (Zinkevich et al. 2013). Lamley et al. utilize 

measurements acquired from both 15N and 13C’, and combined the data for analysis (Lamley et 

al. 2015). Other studies utilize only one or two of these measurements, thus allowing a 

characterization of motion on only a single timescale of interest. For example, Ma et al. utilize 

only R1ρ (in this case, R1ρ resulting from fluctuation of the isotropic chemical shift) for 

characterization of slow conformational exchange (on the order of 2900 s-1) in ubiquitin (Ma et 

al. 2014) and Good et al. studied collective motion in Anabaena Sensory Rhodopsin using S2 

of backbone dipole couplings and 15N R1ρ measurements (Good et al. 2014). Solid-state NMR 

data may also be utilized in conjunction with molecular-dynamics simulations, lending insight 

into the interpretation of experimental parameters (Lange et al. 2009; Ma et al. 2015; Mollica et 

al. 2012; Xue and Skrynnikov 2014). 

 
Figure 1 Schematic representation of the HET-s (218-289) backbone structure in the context of amyloid fibrils 

(adapted from (Van Melckebeke et al. 2011; Wasmer et al. 2008)). Each protein monomer forms two turns of a β 

solenoid which are shown separately here, with the following color-code: white: hydrophobic, blue: positively 

charged, red: negatively charged, green: polar 
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We present a study of dynamics in the fibrils formed by HET-s (218-289), which is the 

prion-forming domain of the HET-s protein from Podospora anserina, responsible for a 

programmed cell death reaction, known as heterokaryon incompatibility (Glass and Kaneko 

2003; Saupe 2000). HET-s (218-289) is an ideal representative for amyloid proteins, due to a 

high degree of local order (Siemer et al. 2006), a lack of polymorphism, and a well defined 

structure (Van Melckebeke et al. 2010; Wasmer et al. 2008), simplifying analysis. HET-s(218-

289) is also an important model amyloid for drug design (Herrmann et al. 2015; Schütz et al. 

2011). A cartoon of the HET-s (218-289) fibril structure is shown in Figure 1. We have 

characterized the dynamics in HET-s(218-289) fibrils using site-specific dynamics analysis of 

backbone 1H–15N and 1Hα–13Cα spin pairs, including measurements of S2, R1, and R1ρ. A 

more complete discussion of the biological significance of our findings will be presented 

elsewhere. Here, we discuss relaxation theory with particular emphasis on importance of 13C–
13C transfer in 13Cα R1 measurements, problems arising for measurement and calculation of 

R1ρ, experimental methods including choice of samples and modifications to the REDOR 

sequence for measurement of 1Hα–13Cα couplings, and finally data analysis with a discussion 

of potential pitfalls. Although our discussion is directed by particular challenges that arose 

when applying dynamics analysis to HET-s (218-289) fibrils, many of the conclusions are 

broadly applicable to the study of proteins dynamics in general by solid-state NMR.  

1 Theory and Practical Aspects of Relaxation Measurements 

1.1 Summary of Relaxation Formalism 

Redfield relaxation theory (Redfield 1957) lays a widely-utilized basis for calculating 

relaxation parameters. In solids the relaxation-rate constants depend on the orientation of 

individual crystallites relative to the external magnetic field, and in fact those rates will change 

throughout the rotor period (Torchia and Szabo 1982). This orientation and deterministic time 

dependence of the relaxation-rate constants makes the data evaluation more complicated than 

for solution-state studies. Given the limited signal-to-noise ratio of experimental relaxation-data 

measurements and the limited spread of the magnitude of the rate constants due to crystallite 

orientations, often single-exponential decays are assumed, where the rate constant of the 

single exponential is approximated by the average of the rate constants (Giraud et al. 2005). 

The Lipari-Szabo model-free approach (Lipari and Szabo 1982), gives a simple procedure to 

calculate the average relaxation-rate constants from model-independent order parameters (S2) 
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and correlation times (τc). In this case, (1-S2) is related to the amplitude of motion of the 

anisotropic interaction (usually dipole or CSA), although the exact physical interpretation of S2 

is not determined without specifying a model (see SI section 1.1 for the definition of S2 for two 

models). 

The extended model-free approach (Clore et al. 1990) gives the spectral-density 

function for two motions, one fast and one slow, characterized by Sf
2 , τf and Ss

2 ,τs, 

respectively, as 

J(ω ) = 2
5
1− Sf

2( ) τ f
1+ (ωτ f )

2 +
2
5
Sf
2 1− SS

2( ) τ s
1+ (ωτ s )

2 . (1) 

The effects of the two motions are cumulative, but the contributions of the slow motion are 

scaled by the presence of the fast motion. Here, we have assumed that the two correlation 

times are separated by at least one order of magnitude so that the calculation of an effective 

correlation time for the fast motion is not required. From the spectral density, one can calculate 

R1 relaxation-rate constants of spin I induced by fluctuation of a dipolar coupling as 

R1
IS = δ IS

4
⎛
⎝⎜

⎞
⎠⎟

2

J(ω I −ω S )+ 3J(ω I )+ 6J(ω I +ω S )( )  (2) 

where 
   
δIS =−2 µ0

4π
γIγS!
rIS
3  is the anisotropy of the dipolar-coupling tensor, and ωΙ and ωS are 

the nuclear Larmor frequencies. The R1 relaxation of spin I induced by a chemical-shift 

anisotropy (ωI σzz=2Δσ/3) is given by  

R1
CSA = 3

4
ω Iσ zz( )2 J(ω I ) . (3) 

The total R1 relaxation-rate constant is then given by the sum 

R1 = R1
IS + R1

CSA . (4) 

Similarly, it is possible to calculate expressions for R1ρ, while accounting for the effects of both 

MAS and the applied RF field (Haeberlen and Waugh 1969; Kurbanov et al. 2011) using  

R1ρ
IS = 1

2
R1
IS + δ IS

4
⎛
⎝⎜

⎞
⎠⎟

2

3J(ω S )+
1
3
J(ω1 − 2ω r )+

2
3
J(ω1 −ω r )+

2
3
J(ω1 +ω r )+

1
3
J(ω1 + 2ω r )

⎛
⎝⎜

⎞
⎠⎟

, (5) 

R1ρ
CSA = 1

2
R1
CSA + 1

6
ω Iσ zz( )2 1

2
J(ω1 − 2ω r )+ J(ω1 −ω r )+ J(ω1 +ω r )+

1
2
J(ω1 + 2ω r )

⎛
⎝⎜

⎞
⎠⎟

, (6) 

R1ρ = R1ρ
IS + R1ρ

CSA . (7) 



 6 

Here, ωr and ω1 are the MAS frequency and RF field strength (nutation frequency) applied to 

the I spin, respectively, assuming that RF irradiation is applied on-resonance. Note that we will 

discuss the validity of the R1ρ equations in Section 1.3.  

Measurement of multiple R1 values at different Larmor frequencies and/or R1ρ values at 

different spinning frequencies and rf-field strengths can in some cases be sufficient to 

determine both the timescale (τc) and amplitude (S2) of a motion or even multiple motions. 

However, depending on the correlation time of a given motion, it may be difficult to determine 

these parameters accurately because their fit values can be strongly correlated. In this case, 

when using the model-free approach, one can determine the total S2 independent of the 

correlation time by directly measuring the magnitude of the incompletely-averaged dipolar 

coupling of the spin pair in question. In this case, the observed dipole coupling is related to S2 

by its ratio to the rigid-limit dipole coupling (calculated using the vibration-averaged bond 

distance): 

S2 = δ obs
IS δ rigid

IS( )2  (8) 

 If motions on multiple time scales are present, then the S2 determined by direct 

measurement of the dipolar coupling will be the product of all order parameters of the different 

motions acting on the dipole coupling. 

S2 = S1
2 ⋅S2

2 ⋅...  (9) 

Note that if the timescale of a motion is slower than the recoupling rate of the 

experiment used to measure S2, then this motion will not be observed via the order parameter. 

For a 1H–13C one-bond dipole coupling (δ=44.8 kHz), this means that sensitivity of the 

recoupling experiment to slow motions will begin to degrade for correlation times of 10s of 

microseconds.  

In order to utilize the above equations, one must be able to assume that the spin of 

interest (13Cα or 15N in our case) is only affected by R1 or R1ρ relaxation from the dipole 

coupling to the bonded 1H and its own CSA. Couplings to other nuclei are weak enough that 

their effect on relaxation-rate constants is usually negligible. R1 measurements can be 

distorted because of cross relaxation to the bonded 1H, which results in a coupled system of 

relaxation equations. However in solid-state NMR, 1H inversion rates, which are typically 

induced by proton spin diffusion, are sufficiently fast to decouple the system of equations. 

Proton-driven spin-diffusion (PDSD) between 13C nuclei (Ernst and Meier 1998) does have real 
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potential to distort 13Cα R1 measurements, and the extent of this effect remains a contentious 

issue in dynamics measurement in solid-state NMR. 

 

1.2 13C Spin-Diffusion and NOE in R1 Measurements 

Effects of 13C–13C magnetization transfer can be investigated with an exchange model, 

given by 

d
dt

I1z
I2z

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

−R1
(1) − k k

k −R1
(2) − k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

I1z −M 0

I2z −M 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥  (10) 

where k is the rate constant for exchange of longitudinal magnetization between spins 1 and 2 

and   R1
(1)  and   R1

(2)  are the respective relaxation-rate constants (Giraud et al. 2007). The 

eigenvalues of the matrix give the following characteristic rate constants, 

λ± =
R1
(1) + R1

(2)

2
+ k ±

(R1
(1) − R1

(2) )2 + 4k2

2 . 
(11) 

Two limiting cases for magnetization exchange then arise, the first when   
2k >> R1

(1) −R1
(2) , and 

the second with   
2k << R1

(1) −R1
(2) , with Eq. (11) simplifying to 

2k >> R1
(1) − R1

(2) :   λ+ =
R1

(1) + R1
(2)

2
+ 2k, λ− =

R1
(1) + R1

(2)

2
2k << R1

(1) − R1
(2) :   λ+ = R1

(1) + k,              λ− = R1
(2) + k

. (12) 

In the former case, magnetization on both spins 1 and 2 decays bi-exponentially, with a 

combination of the two R1 rates. Since the rates are averaged together, it is very difficult to 

determine reliable dynamics data in this situation. In the latter case, magnetization decays 

mono exponentially, with rates of   R1
(1) + k  and   R1

(2) + k , for spin 1 and 2, respectively. Then if k 

is sufficiently small compared to R1, it is possible to obtain reliable dynamics data. 

 It has been shown that by spinning at 60 kHz MAS, signal decay is mono exponential 

and coupled spins (Cα and Cβ, Cα and C’) show distinct relaxation rates, giving clear indication 

that the limit   
2k << R1

(1) −R1
(2)  is well satisfied (Lewandowski et al. 2010). However, being in 

this limit does not necessarily require that   R1 >> k . Investigations of the SH3 protein at 50 kHz 

MAS show severe changes in measured R1 relaxation rates when measuring a uniformly 13C 

labeled sample, as compared to a sample prepared such that most 13C have only 12C 
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neighbors, using a sample grown with 2-13C glycerol (Asami et al. 2015). Larger R1 rates in the 

uniformly 13C labeled sample are then most likely attributed to 13C–13C transfer, indicating that 

rates measured in this sample are not very reliable for dynamics analysis. 

 
Figure 2 13C–13C PDSD spectrum with 1 s mixing. Traces are shown through the most prominent cross-peaks, 

and the ratio of the cross peak intensity to the diagonal peak intensity is indicated. The rate constant of 

magnetization transfer between the Cα and Cβ is bounded by (Iαβ/Iαα) < kαβ τ < Ιβα/Ιββ (here, τ = 1 s). Also 

shown is the Cα–CO region, where peaks resulting from 13C–13C ΝΟΕ transfer are visible. 

We have used a partially protonated, uniformly 13C labeled sample in this study for 13Cα 

R1 measurements, and so it is critical that we verify that the rates obtained are primarily due to 

relaxation induced by the 1Hα–13Cα dipole coupling and the 13Cα CSA- as opposed to 13C–13C 

polarization transfer. It is possible to estimate the rate of spin-diffusion for a pair of 13C spins 

from the ratio of cross-peak intensity to diagonal peak intensity in a 13C PDSD spectrum 

(Giraud et al. 2007; Lewandowski et al. 2010) and one can in fact, put bounds on the spin-

diffusion rate constant. For example, for a Cα–Cβ pair, where we assume that   R1
α < R1

β , it can 

be demonstrated that 
  
Iβα / Iββ ≥ kαβτ ≥ Iαβ / Iαα , where 

 
Iβα  is the cross peak for which 

magnetization begins on Cβ and ends on Cα, and τ is the length of the PDSD mixing (see SI 

section 1.2 for further discussion). Figure 2 shows a 13C PDSD spectrum obtained at 60 kHz 

MAS with 1 s mixing, using the sample for which 13Cα R1 will be measured. Traces are drawn 

through the most intense cross peaks, and the ratio of cross peak to diagonal peak is 

indicated. From these ratios, it is possible to put bounds on the spin-diffusion rates. It is also 
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possible to obtain some additional information when no cross peak is visible, if a diagonal peak 

is well-resolved and by assuming the cross-peak amplitude is less than twice the spectrum 

root mean squared amplitude (RMS), thus allowing upper bounds to be placed on the spin-

diffusion rates. Several bounds obtained this way are given in Table 1. 

Table 1 Bounds on Cα–Cβ spin-diffusion rates 

Residue (Iαβ/Iαα)/

τ 

[s-1] 

(Iβα/Ι

ββ)/τ 

[s-1] 

(2*RMS/Iββ)/

τ 

[s-1] 

260Τhr 0.27 0.36 – 

261Τhr 0.14 0.20 – 

241Leu 0.05 0.07 – 

Asn (226, 262, or 279) 0.08 0.08 – 

239Val – – <0.06 

237Ala – – <0.05 

235Glu – – <0.03 

228Ala – – <0.06 

 

One first notes that the cross peaks identified (260T, 261T, and 241L) are the residues 

with the 1st, 7th, and 3rd smallest chemical-shift difference between Cα and Cβ, respectively. 

This seems unlikely to be coincidence, since a smaller chemical-shift difference will typically 

lead to more efficient spin diffusion (Ernst and Meier 1998). Peaks for which the spin-diffusion 

rate was bounded only by the diagonal peak intensity and the spectrum RMS show also low 

upper bounds to the 13C–13C transfer rate. Aside from 260T, and 261T, the bounds on the 

rates here indicate that measurement of 13Cα R1 rates should be dominated by relaxation 

processes and not by 13C–13C transfer as can be seen by comparison to the R1 rate constants 

reported in the results section. 

This raises the question why we are able to get relatively good results for measurement 

of 13Cα R1 in uniformly 13C labeled HET-s (218-289), whereas Asami et al. do not for uniformly 
13C labeled SH3 (Asami et al. 2015). A simple answer can be that we spin at 60 kHz MAS, as 

compared to Asami et al. who spin at 50 kHz. To test this, we compare median values of 13Cα 

R1 for our sample at 50 kHz and at 60 kHz MAS, and find rates of 0.29 s-1 and 0.21 s-1, a 
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nearly 40% increase in the measured rate at 50 kHz. Furthermore, when spinning to 65 kHz, 

the median rate is 0.20 s-1; this relatively small change between 60 and 65 kHz suggests that 

contributions from spin-diffusion are mostly quenched above 60 kHz. Plots of the residue 

specific rate constants are given in SI Figure 3.  

Nonetheless, spinning to 60 kHz MAS may not always be sufficient to remove all 13C–
13C transfer. Very weak Cα–C’ cross peaks appear in Figure 2, which is unexpected due to the 

large chemical-shift difference (Asami et al. observe similar results for SH3). For comparison, 

we measure a fully-protonated sample of uniformly 13C labeled MLF under the same conditions 

(60 kHz MAS), and find that there are no Cα–C’ cross peaks (see SI figure 4). The most likely 

explanation for appearance of Cα–C’ cross peaks in the sample of HET-s but not in MLF is that 

slower motion (ns-µs) in HET-s induces 13C–13C NOE (Kaiser 1963; Solomon 1955), whereas 

MLF has very little motion in this timescale to induce an NOE, although note that the 

protonation level is different in the MLF sample. This complicates the question as to whether 
13C–13C transfer can be eliminated by faster spinning. NOE transfers due to microsecond (or 

slower) motions can in fact be reduced by faster spinning, however NOE transfers due to 

faster motion cannot be, and so the approach of preparing samples which do not have 

neighboring 13C may be the only viable approach if the NOE contribution is significant (Asami 

et al. 2015). However, NOE transfer does not appear to be a severe problem in our case, 

based on cross-peak analysis. Nonetheless, this study will have some systematic distortion of 

the 13C R1 measurements due to potential additional 13C–13C relaxation pathways. 

1.3 Transverse Relaxation (R1ρ) and the Violation of the Redfield Approximation 

The ability to fit both R1 and R1ρ data using the model-free approach allows one to 

utilize the extended model-free analysis to fit both slow and fast correlation times. Here, we 

investigate potential problems that may arise when utilizing the above listed equations for R1ρ 

(Eqs. (5)-(7)) . We begin by examining the behavior of R1ρ as a function of the correlation time, 

because at some point Redfield theory will no longer be valid when the correlation time 

becomes too long. In order to investigate the range for which Eq. (5) is valid, we have used 

stochastic Liouville simulations (Abergel and Palmer 2003; Kubo 1963; Schneider and Freed 

1989) of a dipole-coupled, two-spin system (without CSA) undergoing a two-site hop (Wittebort 

and Szabo 1978), where the opening angle between the two sites is 5º, and determined its R1ρ 

for a wide range of correlation times, as shown in Figure 3. The simulation is performed in the 

laboratory frame of reference, which employs the full untruncated dipolar-coupling Hamiltonian, 
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and, therefore, gives numerically accurate results for the complete range of timescales. This 

calculation is compared to R1ρ calculated based on Eq. (5), involving the Redfield 

approximation. In addition, R1ρ is also calculated from a stochastic Liouville simulation in the 

rotating frame using the high-field truncated rotating-frame Hamiltonian. The calculation based 

on Eq. (5) is in very good agreement with the stochastic Liouville simulation in the laboratory 

frame for τc < 320 ns. However, for longer correlation times, the calculation deviates from the 

exact simulation, and at the maximum deviation it is 1.65 times larger than the correct R1ρ 

value. To understand this failure, one must note that the Redfield approximation assumes that 

the magnetization does not evolve significantly within the correlation time of the motion 

(Redfield 1957). The calculated T1ρ (T1ρ = 1/R1ρ) is orders of magnitude longer than the 

correlation time, τc, meaning that relaxation will not change the magnetization significantly 

within τc. However, coherent behavior may also cause evolution of the magnetization. Since a 

perfect spin-lock cannot be obtained, some evolution of magnetization will occur due to the 

dipole coupling to the 1H. In SI Figure 5, we show how this evolution affects the amount of 

magnetization along the x-axis, and see that it causes an oscillation with a rate on the order of 

the rotor frequency. Therefore, although the magnetization refocuses periodically, the 

assumptions taken in Redfield theory can fail as the correlation time approaches the rotor 

frequency. 

In contrast, the rotating-frame simulations that use the high-field approximation are in 

good agreement with the laboratory-frame simulation for τc > 3.2 ns. Therefore, we calculate 

R1ρ based on Redfield theory using equations Eqs. (5) and (6) for τc < 320 ns, but use the 

stochastic Liouville simulations in the rotating frame for longer correlation times. In principle 

one could also use the laboratory-frame simulation for all timescales, but this is much more 

computationally expensive as discussed in SI section 1.7. Note that the motional models that 

we eventually use include multiple timescales. In this case, only one motion has τc > 320, and 

so R1ρ is determined via simulation for this motion, and R1ρ contributions due to faster motions 

are determined using Eqs. (5) and (6), and all contributions to R1ρ are simply added together.  
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Figure 3 Comparison of R1ρ calculation methods. Here, we calculate R1ρ for a 1H–13C spin system with δIS/2π = 

46.6 kHz, ωr/2π = 60 kHz, and ω1/2π = 35 kHz, undergoing a hopping motion between two orientations, 

separated by 5º. The correlation time of this motion is swept. A simulation is performed in the lab-frame (black, 

dotted line), in the rotating frame (blue line), and a calculation is done using the model-free approach, with 

equation (5) (red line). The lab-frame simulation is numerically exact over the entire range of correlation times 

Calculating R1ρ based on Redfield theory using Eqs. (5) and (6) can still return 

qualitative results for slow motions, but particular care should be taken when fitting multiple 

timescales, as amplitude (S2) errors in the slow timescale can propagate to the fast timescale if 

the total amplitude of motion is characterized with S2 measurements. Further, when comparing 

results from different nuclei, one may find disagreement in the resulting timescales.  

When measuring R1ρ, one must also avoid the presence of coherent contributions to the 

decay of the spin-locked magnetization; in particular one must avoid the vicinity of the 

HORROR (ω1 = ωr/2) (Nielsen et al. 1994) and rotary-resonance (ω1 = ωr, ω1 = 2ωr) (Oas et al. 

1988) conditions. In principle, however, R1ρ measured near the rotary-resonance condition 

may contain valuable information. This is because motions with long correlation times have 

little effect on the spectral-density function, J(ω), except when ω is near to zero (see Eq. (1)). 

Therefore, in order to obtain information on slow motions, ideally one measures R1ρ under 

conditions that sample J(ω) near zero. From (5) and (6), we see that the condition ω ≈ 0 is met 

when ω1 ≈ ωr or ω1 ≈ 2ωr, which is coincident with the rotary-resonance conditions. Therefore, 

one cannot sample J(0) exactly, but it is possible to work near this condition, as long as 

appropriate caution is taken and the coherent contributions to the decay can be neglected (see 

below). 
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Figure 4 Signal intensity as a function of time near the rotary-resonance condition. Here, a 1H–13C spin pair is 

simulated (δIS/2π = 46.6 kHz, no CSA), with ωr/2π = 60 kHz, and ω1/2π = 48 kHz. In (A), a single spin pair is 

considered (with Euler angles α = 0º, β = 65º, γ = 0º), with (blue) and without flips (red) of the 1H. The flip 

positions are marked by dotted lines. In (B), an ensemble average is considered, without 1H flips (blue) and with 
1H flips at a rate of 20 s–1 (red) 

 

In order to investigate measurement of R1ρ near rotary resonance, we perform several 

simulations (see SI section 1.8 for details). The blue traces in Figure 4 show signal intensity for 

a single spin pair at a particular powder orientation and an ensemble average near the rotary 

resonance condition, in A and B respectively. The intensity corresponds to x-magnetization on 

the 13C spin. As one sees, oscillation due to the proximity to rotary resonance is periodically 

refocused for individual spin-pairs (Figure 4A, blue trace). For a powder average, some initial 

loss occurs since the spin pairs do not oscillate at the same frequency, but the total signal 

quickly equilibrates and only a very slow decay is observed at later times. However, if the 1H 

spin flips during the oscillation, then individual spin pairs do not refocus, as shown in Figure 

4A, red trace. The net result is that the ensemble- and powder-averaged signal decays 

towards zero, as shown in Figure 4B, red trace.  
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Figure 5 Illustration of 13C or 15N magnetization trajectory in response to 1H spin flips. The field resulting from the 

dipole coupling (red), the field from the spin lock (green), and the resulting effective field (blue) are shown as solid 

lines. In black, the trajectory that the magnetization takes from the x-axis around the effective field is shown. After 

a 1H flip, the direction of the field from the dipole coupling and also the effective field are changed (dotted lines). 

The trajectory of magnetization is shown after the flip for the case that the magnetization is along the x-axis when 

the flip occurs (case 1), and for the case that the magnetization has rotated 180º around the effective field when 

the flip occurs (case 2). The first case results in no observable change of the projection of magnetization along 

the x-axis, but the second case reduces the projection.  

To further illustrate this, we show a picture in Figure 5 for an example of signal decay, 

based on a static experiment. Then, there is no rotary resonance condition, but there is an 

effective field that depends on the spin-locking field and the dipole coupling- as well as the 

state of the 1H spin. Magnetization oscillates around the initial effective field (labeled as ‘before 

flip’. Note that one measures the projection of magnetization onto the x-axis). Then, after some 

time the 1H flips, moving the effective field (labeled as ‘after flip’). The effect this has on the 

magnetization depends when the 1H flips. Two extreme cases are shown. In the first case, 

magnetization has returned exactly to its starting location when the 1H flip occurs. This causes 

the magnetization to begin to oscillate from the x-axis to below the xy-plane, instead of above 

it, and so the projection of magnetization on the x-axis is unaffected. In the second case, the 
1H flip occurs when the magnetization is 180º away from its starting position around the 

effective field. This results in the magnetization taking a much wider trajectory around the new 

effective field, and the projection of the magnetization on the x-axis is reduced. Repeated flips 
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like this will further deplete the magnetization on the x-axis. Of course, all cases in between 

these extremes will also occur, and will be averaged over the ensemble of spins. In the MAS 

case, the effective field is time dependent, although the analogy stands. Furthermore, the 

deviation of the trajectory of magnetization from the spin-locking field increases as rotary 

resonance is approached, therefore increasing the signal dephasing. This leads to faster R1ρ 

dephasing due to 1H flips. 

 
Figure 6 Calculated ΔR1ρ rates as a function of the 1H flip rate. The ω1 and ωr values chosen are those used in 

our experiments for 13C and 15N. ωr/2π = 60 kHz for all curves except for the red line in (A), for which ωr/2π = 

40 kHz 

The rate of magnetization decay due to 1H flips depends both on the proximity to the 

rotary-resonance condition and on the rate that 1H flips occur, which in turn depends on the 

MAS frequency, 1H density, and to some extent on the spin-lock strength applied to the 

heteronucleus (a major source of 1H flips is proton spin diffusion, see (Grommek et al. 2006; 

Takegoshi et al. 2003) for the dependency of spin diffusion on fields applied to other nuclei). 

However, the 1H flip rate can be measured (see section 2.2), and, therefore, this contribution 

can be calculated and compensated for in the data-evaluation process. Note that this is only 

possible because the contribution to R1ρ from 1H inversion (ΔR1ρ
(1H inver)) is approximately 

additive to other R1ρ contributions, such that 

R1ρ
(exp) ≈ R1ρ

(stoch) + ΔR1ρ
(1H inver ) . (13) 

We verify this via simulations that include both a stochastic motion and 1H inversions, and 

compare the resulting R1ρ to simulations including only stochastic motion and only 1H inversion 
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(see SI Figure 6). Figure 6 shows this contribution to R1ρ as a function of 1H flip rate, at the 

experimental conditions used in this study. Note the greater contributions seen for 1Hα–13Cα 

spin pairs compared to 1H–15N spin pairs. The site-specific corrections for our experimental 

data are given for 15N in Figure 7 and for 13Cα in SI Figure 7. 

 
Figure 7 1H flip rate and R1ρ correction. In (A), we show the measured 1H flip rate for each spin-lock and spinning 

frequency, matching the conditions used for measurement of 15N R1ρ relaxation. The rates shown in (A) are then 

used in (B) to calculate ΔR1ρ
(1H inver), the correction of the measured R1ρ rate. The different experimental conditions 

are shown, with a different colored bar for each measurement condition, following the color code shown in (B) 

To emphasize the importance of contributions to R1ρ from 1H inversion, we illustrate how 

potential problems arise using a simple model simulation. For 15N, let us assume a motion with 

τc = 3 ns and an S2 = 0.810, and for 13Cα we assume a motion with τc = 3 ns and S2 = 0.880. 

We will also assume a 1H frequency of 850 MHz, for 15N we assume the anisotropy of the 

dipolar coupling to the 1H is δ = 22.9 kHz and the CSA is Δσ = 150 ppm, and for 13C the 

coupling is δ = 46.6 kHz and the CSA is Δσ = 30 ppm. If we use equation (7), we calculate for 

all values of ω1 and ωr a 15N R1ρ
(stoch) value of 2.0 s-1 and a 13Cα R1ρ

(stoch) of 4.0 s-1. However, 

the typical 1H inversion rates measured in this study fall in the range of 10-20 s-1, although the 

full range is quite a bit broader (Figure 7 and SI Figure 7). Assuming, for both 15N and 13Cα, a 
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1H inversion  rate of 20 s-1, different values of R1ρ are obtained depending on the simulation 

conditions. The predicted rates (R1ρ
(stoch)+ΔR1ρ

(1H inver)) as a function of the parameters are 

plotted as colored bars in Figure 8A for 15N and in Figure 8B for 13Cα. The rate constants 

obtained for 15N R1ρ are all greater than 2.0 s-1, and those obtained for 13Cα R1ρ are all greater 

than 4.0 s-1, with increasing deviation from R1ρ
(stoch) as the rotary-resonance condition is 

approached. 

 The problem becomes clear when one tries to fit these simulated R1ρ rates to a 

motional model without considering the contribution by the 1H inversion. In this case, one finds 

that the R1ρ can be reasonably well fit to a motional model with only a single motion, as shown 

in Figure 8A and B (black dots). For 15N, the fit to a single motion yields a correlation time of 

6.3 µs and S2 = 0.998, and for 13Cα the correlation time is 5.0 µs and S2 = 0.997. Thus, the 

assumed motion with a 3 ns correlation time and a relatively low order parameter has now 

been fitted to a single, microsecond motion with a much higher order parameter - a severe 

failure of the analysis. To avoid such a misinterpretion when using experimental data, it is 

important to either avoid experimental conditions that have a large contribution to the 

measured R1ρ from 1H inversion (ΔR1ρ), or measure the 1H inversion rate and correct for the 

effect. It is also worth noting that for 13Cα, where one of the simulation conditions involves a 

different MAS frequency, the fit to incorrect motion is much worse, so that acquiring R1ρ at both 

different spin-locking frequencies and different MAS frequencies can help differentiate between 

true motion and magnetization decay induced by 1H inversion.  

  

Figure 8 Misinterpretation of R1ρ caused by 1H inversion but interpreted as slow molecular motion. In (A), we take 

the 15N experimental settings for ω1 and ωr, and use simulation to predict R1ρ relaxation rates for a motion with τc 

= 3 ns and S2 = 0.810 and for a 1H inversion rate of 20 s-1 (colored bars). The simulated rates are then fitted to a 

model that only considers motion (no 1H inversion), using simulation of a slow motional, two-site hop with τc=6.3 

µs and S2=0.998 (black dots). In (B), we do the same for our 13Cα experimental settings, this time for a motion 

with τc = 3 ns and S2 = 0.880 and for a 1H inversion rate of 20 s-1 (colored bars). We also fit to a simulation of a 
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slow motional, two-site hop model, in this case with τc=5.0 µs and S2=0.997  (black dots). The fit is not as good, 

due to the usage of a different MAS frequency for the last data point 

2 Experimental Methods 

2.1 Sample Preparation 

Measurement of dynamics data in the solid state requires minimization of undesired 

coherent interactions, so that measured relaxation rates on the X-nucleus can be attributed 

primarily to stochastic modulation of the X-CSA, and H–X dipole coupling of the bonded 1H. 

This is, in part, achieved by partial deuteration of the sample to be measured. An additional 

benefit to sample deuteration is that it improves resolution in the 1H dimension, making it 

possible improve sensitivity with 1H detection (Agarwal et al. 2014).  

Therefore, samples were prepared to yield uniformly 13C, 15N labeled HET-s, with partial 

deuteration. Samples for measurement of both 1H–15N and 1Hα–13Cα dynamics were prepared 

by recombinant expression of histidine-tagged HET-s (218-289) in Escherichia coli BL21 in M9 

minimal medium (Balguerie et al. 2003). Uniformly labeled 2H, 13C glucose was the sole carbon 

source, and 15ND3OD was the sole nitrogen source. In the case of the sample for the study of 
1H–15N dynamics, the growth solvent is pure D2O, but fibrilization is performed in pure H2O to 

yield a sample only protonated at exchangeable sites. For the sample for the study of 1Hα–
13Cα dynamics, the growth solvent is 75% D2O and 25% H2O, and fibrilization is performed in 

D2O. This growth medium yields 25% protonation at the Hα position, and limited protonation at 

other positions (Asami et al. 2010; Asami et al. 2012; Lundström et al. 2009). Fibrilization in 

D2O eliminates protonation at exchangeable sites. Details of sample preparation, purification, 

and fibrilization are given in SI section 2.1. 

2.2 Experiments 

In order to precisely determine dynamics on multiple timescales, the direct order 

parameter S2, three R1, and five R1ρ measurements (including 1H flip-rate measurements for 

R1ρ correction) were acquired site specifically for the dynamics of both 1Hα–13Cα and 1H–15N 

vectors. The experiments are summarized in Table 2. All experiments were acquired using 

MAS at 60 kHz, unless otherwise noted, using a Bruker Advance III HD console (400, 500, and 

850 MHz Larmor frequencies) and a 1.3 mm triple-resonance (1H, 13C, 15N) probe. Sample 

temperature was 23.3±0.3º C, determined by referencing the supernatant water shift to DSS 

(Böckmann et al. 2009). Two-dimensional 1H–15N and 1Hα–13Cα correlation experiments were 
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used to obtain site resolution, where detection was performed on the 1H nucleus in order to 

maximize signal to noise. This required assigning the 1H resonances, which was done using 

the existing N, Cα, Cβ, and C’ assignment (Siemer et al. 2006; Van Melckebeke et al. 2010); 

the details of the assignment will be provided elsewhere. 

The pulse sequences used to measure dynamics data are shown in Figure 9. All 

sequences use an initial adiabatic cross-polarization step (Hediger et al. 1995) to the 

heteronucleus of interest to boost the initial polarization (15N or 13Cα) and water suppression 

using a modified MISSISSIPPI sequence (Zhou and Rienstra 2008) (π/2 pulses are inserted 

after each saturation period). Magnetization is then transferred back to 1H from the 

heteronucleus, and signal is detected on 1H. Detailed experimental parameters are provided in 

SI section 2.2. 

Table 2 Experiments and Parameters 

Nucl. Type 
# Exper. 
(total time) 

Critical Parameters 

13C REDOR 1 (215 hrs) ωr/2π = 60 kHz ω0H/2π=850 MHz ω1H/2π=150 kHz 

13C 
R1ρ  

(+1H flip rate) 

5 (+5) 

(331 hrs, 

+ 251 hrs) 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ωr/2π = 40 kHz 

ω0H/2π = 500 MHz  

ω0H/2π = 500 MHz 

ω0H/2π = 850 MHz 

ω0H/2π = 850 MHz 

ω0H/2π = 850 MHz 

ω1/2π = 9.3 kHz 

ω1/2π = 17.5 kHz 

ω1/2π = 35.0 kHz 

ω1/2π = 47.7 kHz 

ω1/2π = 25.0 kHz 

13C R1 3 (396 hrs) 

ω0H/2π = 400 MHz  

ω0H/2π = 500 MHz 

ω0H/2π = 850 MHz 
15N REDOR 1 (123 hrs) ωr/2π = 60 kHz  ω0H/2π = 850 MHz ω1H/2π = 150 kHz 

15N 
R1ρ 

(+1H flip rate) 

5 (+5) 

(358 hrs, + 

156 hrs) 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ωr/2π = 60 kHz 

ω0H/2π = 850 MHz  

ω0H/2π = 850 MHz 

ω0H/2π = 850 MHz 

ω0H/2π = 500 MHz 

ω0H/2π = 500 MHz 

ω1/2π = 10.8 kHz 

ω1/2π = 16.1 kHz 

ω1/2π = 24.5 kHz 

ω1/2π = 37.6 kHz 

ω1/2π = 50.8 kHz 

15N R1 3 (519 hrs) 

ω0H/2π = 400 MHz  

ω0H/2π = 500 MHz 

ω0H/2π = 850 MHz 

 

In both R1 and R1ρ sequences, magnetization is allowed to decay, either as longitudinal 

magnetization for R1 measurements (Figure 9A), or as spin-locked magnetization for R1ρ 
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(Figure 9B). The sequence shown in Figure 9C measures the 1H flip rate required for the 

correction of the R1ρ data. Since initially the net magnetization is roughly equal at all sites, it is 

necessary to first perform the indirect dimension so that polarization is unequal for the different 
1H, allowing polarization transfer between them. This also means that signal gains due to spin-

diffusion from different sites appear as cross-peaks, and so do not distort the measurement of 
1H flip rate on the peaks of interest (assuming separation between the cross peaks and the 

peaks of interest). Note that an RF-field is applied to the heteronucleus during measurement of 

the 1H flip rate. This field needs to match that used during the corresponding R1ρ 

measurement, because couplings to 13C or 15N spins assist 1H spin-diffusion, and so fields 

applied to those spins may change the spin-diffusion rates (Grommek et al. 2006; Takegoshi et 

al. 2001). Because a major source of 1H flips is spin-diffusion, it is possible to observe bi-

exponential (or multi-exponential) behavior when measuring the 1H flip rate, due to build up of 

magnetization on neighboring 1H’s. In this case, it is not yet clear whether one can correct the 

R1ρ to account for 1H spin-diffusion. However, if spin-diffusion does not result in significant 

buildup on neighboring 1H’s (due to sufficiently fast R1 or diffusion to more distant protons, for 

example), then nearly monoexponential behavior is seen, as was observed in our experiments 

(see SI Figure 17 for plots of the 1H behavior), and we can perform the R1ρ correction. One 

must also be careful that new cross-peaks do not overlap peaks of interest, and therefore 

distort the extracted 1H flip rate- although we also did not encounter this problem. 
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Figure 9 Pulse sequences for 2D experiments to measure dynamics data. A) and B) are R1 and R1ρ 

measurement sequences, respectively, where τ is incremented to obtain relaxation curves. C) measures the 1H 

flip rate, under the same conditions as the R1ρ measurements. D) shows the shifted-REDOR sequence, which is 

used to measure 1H–15N residual dipole couplings. The * indicates the pulse that could be replaced with a 

selective pulse for selective REDOR. E) shows the REDOR sequence that is used to measure 1Hα–13Cα 

couplings by frequency-selecting the 1Hα resonances. For both D) and E), XY-16 phase cycling (Gullion et al. 

1990) is used to compensate pulse error (with mirroring of phases around the center of the REDOR period), and n 

is incremented to obtain REDOR curves. S0 reference curves are obtained by omitting all 1H π-pulses during the 

dephasing period  

The REDOR sequence is used to measure the 1H–15N and 1Hα–13Cα dipolar couplings 

(Gullion and Schaefer 1989b) because of its robustness against RF inhomogeneity and 

incorrect settings of the RF field strength (Schanda et al. 2011). The scaling factor of the 

standard REDOR sequence (Jaroniec et al. 2000) is too large for the measurement of one-

bond dipole couplings at fast MAS frequencies. This problem can be overcome by shifted-time 

REDOR, where the pulses in the center of the rotor period are shifted in order to reduce the 
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effective recoupling strength (mirror-symmetric REDOR, (Gullion and Schaefer 1989a)), as 

shown in Figure 9D. We use this sequence for obtaining 1H–15N order parameters.  

Measuring 1Hα–13Cα order parameters is more challenging, because our isotope-

labeling scheme leads to some residues protonated at the 1Hα position as well as at the 1Hβ 

position. Frequency-selective REDOR (Jaroniec et al. 2001) can be used to only recouple H–C 

couplings for which the H resonance is within a given frequency range, making it possible to 

exclude most Hβ–Cα couplings. However, frequency-selective REDOR is not compatible with 

mirror-symmetric shifted REDOR shown in Figure 9D. The reason for this is that frequency-

selective REDOR uses a selective pulse on the 1H channel in the center of the REDOR period, 

which replaces the first pulse after the center of the sequence (marked with a * in Figure 9). 

Then, the 1H–X dipole couplings of 1H’s that are inverted by the selective pulse are refocused 

by the frequency-selective REDOR sequence, whereas dipole couplings of 1H’s that are not 

inverted by the selective pulse are not refocused, because the second half of the REDOR 

period reverses the recoupling achieved in the first half of the REDOR period. When one uses 

the mirror-symmetric shifted REDOR shown in Figure 9D, however, one finds that if the first 

pulse after the center of the REDOR period (marked with a *) is removed, recoupling is still 

achieved- although the rate of recoupling is not the same as if the pulse is included. Therefore, 

even if a selective pulse is used, the dipole couplings to 1H’s that are not inverted with a 

selective pulse are also recoupled but with a smaller scaling factor. To resolve this, we have 

modified the REDOR sequence as shown in Figure 9E. In fact, the sequence used here is very 

similar to the mirror asymmetric sequences presented in (Gullion and Schaefer 1989a), 

because the first and second half of the sequence are identical without mirroring. Therefore, if 

the 1H is not inverted in the center of the sequence, the recoupling achieved in the first half of 

the sequence is reversed in the second half, making it possible to use selective REDOR. One 

does need to be careful, however, since not all Hβ chemical shifts are well separated from the 

Hα chemical shifts. 

Note that although the π-pulses in our sequence are immediately next to each other, we 

still have recoupling. When using fast MAS, in our case 60 kHz, strong π-pulses still take up a 

significant part of the rotor period (e.g. two 150 kHz π-pulses take 40% of the rotor period). 

Therefore, two π-pulses placed immediately next to each other in the center of the rotor period 

significantly reduce the effective dipole coupling during that period, and so the dipole coupling 

is no longer completely averaged by MAS (see SI Figure 8 for calculation of a time-trace). For 

the selective pulse, we use a Q3 pulse (Emsley and Bodenhausen 1992), with bandwidth set 
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to cover the 1Hα chemical shift range (at a 1H frequency of 850 MHz, this resulted in a 1376 µs 

pulse, 3.2 kHz bandwidth- defined by the width where at least 50% inversion occurs). We 

utilize XY-16 phase cycling (Gullion et al. 1990) as in the shifted REDOR sequence. We check 

that the measured 1Hα–13Cα dipole couplings are not strongly scaled by our sequence, a 

serious problem for dynamics analysis resulting from radio-frequency (RF) inhomogeneities, 

which has been investigated in detail for 1H–15N dipole couplings (Haller and Schanda 2013). 

We check for scaling by refitting our REDOR data set with a uniform scaling factor multiplied 

by the measured dipole couplings, and optimizing that scaling factor to best-fit the data. 

Ultimately, we scaled our dipole couplings up by a factor of 1.012, a relatively small amount.  

3 Data Analysis 
Each dynamic parameter measurement is acquired as a series of 2D experiments, 

where the value of either τ, or n for REDOR experiments, is incremented (see Figure 9). We 

then extract the amplitude for each cross peak in all spectra. This yields time-dependent 

intensities for each resonance (selected measurements given in SI Figures 17-21), which are 

then fitted to determine relaxation-rate constants and scaled dipolar couplings, and finally the 

acquired dipolar couplings and relaxation rates are fitted to a dynamic model. The details of 

each step are presented in this chapter. 

3.1 Spectrum Fitting 

A significant amount of overlap of resonances in both 2D 1H–15N and 1H–13C spectra 

make extraction of accurate amplitudes for each residue difficult using either peak maxima or 

peak integration (see SI Figure 9). Therefore, we have developed an automated spectrum-

fitting routine, using MATLAB (The MathWorks 2013). For our purposes, it is critical to have 

precise fitting of the spectra; in particular, peak shapes must be as accurate as possible. 

Incorrect shapes result either in fitting of incorrect amplitudes of neighboring peaks due to the 

overlap, or one must add extra peaks to fit out these extra errors leading to over-fitting, and, 

therefore, introducing additional noise into the extracted data.  

In order to have optimal results, we fit the experimental spectrum using peak shapes 

that are calculated based on acquisition and processing parameters; in particular acquisition 

time, apodization function, and zero-filling are used to generate accurate peak shapes. The 

type of signal decay is user specified in each dimension (Gaussian, exponential, or some 
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mixture), and we vary the type of decay to further improve fitting. A more complete description 

of this program will be presented in a separate publication. 

In order to extract intensities from 2D spectra, we begin by generating a reference fit for 

each of the two data series: one for Hα–Cα 2D spectra and one for H–N 2D spectra. The 

resulting fits are shown in SI Figure 9 where the experimental and fitted spectra are shown 

along with several traces to show the fit quality. The program determines number of peaks, 

peak positions, line widths, and intensities for the reference fits. Then for each data series, the 

number of peaks and the peak positions are fixed for all consecutive fits. However, the line 

widths are re-optimized, to account for different magnetic fields, and other smaller variations in 

experimental conditions. Once the line widths are re-optimized for a data series, then each 

spectrum in the series is fitted by only allowing the intensities to vary. By fixing as many 

parameters as possible, the influence that overlap of neighboring peaks has on the measured 

intensities is minimized. Note that this method makes the quality of the initial fits critical, and in 

general makes spectrum phasing and referencing very important. Examples of the resulting 

time traces are given in SI Figures 17-21. 

3.2 Parameter and Error Determination 

After intensities are extracted from the 2D spectra, it is necessary to determine 

relaxation rates or partially-averaged dipolar couplings from the data. For all relaxation rates 

except 15N R1ρ, the intensity data is fitted to a mono-exponential decay 

Ik = Aexp(−Rτ k ) , (14) 

where R = R1 or R1ρ, and A accounts for the differences in intensities for different resonances. 

We also use this formula to extract the rate of 1H inversion from experimental data, and 

furthermore for extracting R1ρ values from simulations. When fitting 15N R1ρ, we have to fit the 

data to a bi-exponential function: 

Ik =
A
2
exp(−Raτ k )+ exp(−Rbτ k )( )  (15) 

This is a result of significant contributions from CSA/dipole cross-correlated cross relaxation to 

the spin-locked two-spin term (2IxSz) leading to a bi-exponential decay of the magnetization. 

Another way of looking at this is that the two lines of the 15N multiplett (IxSα and IxSβ) decay 

with two different relaxation-rate constants. However, 1H inversion causes these two rates to 

partially average, and in the limit of fast flipping, Ra = Rb. Therefore, the ratio of Ra to Rb 

changes for different residues, but the average of these two rates is independent of the flip rate 
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and we report R1ρ = (Ra+Rb)/2. Note that this is the rate predicted by Redfield theory (see Eq. 

(7), and if we compare to a stochastic Liouville simulation, we may also take the average of the 

bi-exponential fit of the simulated curve. 

 REDOR data consists of two data sets: S curves, which give dephasing due to coupling 

between the 1H and the heteronucleus, and S0 curves, which have the 1H π pulses omitted 

(note that S and S0 here should not be confused with the order parameter, S2). The length of 

our dephasing period is relatively short (600 µs for 1Ηα–13Cα, 1.33 ms for 15N), so that the 

decay of the S0 curve is linear in this range. Therefore, we only acquire a few S0 spectra, using 

linear regression to fit the S0 to a straight line so that for a particular residue, 

S0,k = mτ k + b . (16) 

Then the REDOR curve is given by 

Ik =
S0,k − Sk
S0,k

, (17) 

and the intensities Ik are fit to amplitudes determined by simulating the appropriate pulse 

sequence in SIMPSON (Bak et al. 2000) with a two-spin system, where the order parameter 

(S2 = (δIS
obs/δIS

rigid)2) is varied to achieve a fit. For 1Hα–13Cα REDOR curves, the simulated 

amplitudes are also fitted with an additional scaling factor (Ikfit =A Iksim). Imperfect inversion of 

the 1Hα by the selective pulse (Figure 9E) decreases the dephasing amplitude, although 

otherwise does not significantly impact the shape of the dephasing curve. The additional 

scaling factor accounts for this.  

For all parameters, it is also necessary to know the error of the measurement. We 

obtain a standard deviation by bootstrapping our data (Efron and Tibshirani 1993): first, we 

obtain a best fit of the data to the model, and then assume that 

Iexp,k = Imodel,k + ε k , (18) 

where εk is the error at data point k. Then, a bootstrapped data set is generated using 

Ibootstrap,k = Imodel,k + εm , (19) 

where εm is a randomly selected error (with replacement) from the εk of the original fit. The 

bootstrapped intensities are then refit, to obtain a new value of the parameter of interest (R1, 

R1ρ, S2). The bootstrapping process is repeated 100 times, and the standard deviation of the 

fitted parameters obtained from the bootstrapped data is taken to obtain the measurement 

standard deviation (σ). The advantage of using a bootstrap to determine error is that it 

inherently includes all sources of error occurring within a given data set. This then includes 
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spectral noise, as well as other experimental variations- such as instrumental instabilities and 

temperature variation within a data set. It will not include variations that occur between data 

sets, however, and so we must take care to control sample quality, temperature, etc.  

3.3 Fitting to a Dynamic Model 

For each 1Hα–13Cα and 1H–15N spin pair, we have several experimental parameters (R1, 

R1ρ, and S2), which must be fitted to a dynamic model that is characterized by multiple 

amplitudes (Si
2) and timescales (τi) of motion. Then, we can compare the experimental 

parameters to those calculated from the dynamic model using a χ 2-statistic as follows: 

χν
2 =

Sexp − Scalc( )2
σ (S)( )2

+
k=1

NR1

∑
R1,k
exp − R1,k

calc( )2
σ (R1,k )( )2

+
k=1

NR1ρ

∑
R1ρ ,k
exp − R1ρ ,k

calc( )2
σ (R1ρ ,k )( )2

. (20) 

Equation (20) contains the calculated values for all experiments, the experimental values, and 

the experimental standard deviation. ν is the degrees of freedom of the χ2 distribution, given by 

the number of experimental parameters (
  
NR1 +NR1ρ +1) minus the number of fit parameters. 

Minimizing the value of χ 2 by varying the dynamic model parameters then returns a fit to the 

dynamic model that favors the more precisely measured parameters. We report the reduced-χ2
 

in later figures, which is given by χ2/ν. We additionally estimate the 68% confidence interval for 

each parameter, by finding the range on that parameter for which χ2 < χ2
min+1, where χ2

min is 

minimized value of χ2 (Clifford 1973). Details of the error analysis and the χ2 minimization are 

given in section 3.2 of the SI.  

When fitting experimental parameters to dynamic models, we will use either two or three 

timescales of motion. If a motion has a correlation time longer than 320 ns, R1ρ will be 

calculated using stochastic-Liouville simulations in the rotating frame, otherwise it will be 

calculated using Redfield theory (Eq. (7)). R1 is always calculated using Redfield theory (Eq. 

(4)), because slow motions with correlation times longer than 320 ns will have a negligible 

contribution to R1. We assume for all calculations or simulations a 1Ηα–13Cα bond distance of 

1.09 Å, a 1H–15N bond distance of 1.02 Å, a 13Cα CSA of 20 ppm (although this is almost 

negligible), and a 15N CSA of Δσ=170 ppm. The 13Cα CSA is assumed to be axially symmetric 

and collinear with the 1Hα–13Cα dipole coupling. The 15N CSA is assumed to have an 

asymmetry of η = 0.4 (Wylie et al. 2006), and Euler angles of (α=30º,β=25º,γ=0º) (Hou et al. 

2010). 
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Figure 10 Slow timescales (τs) determined using a 4-parameter fit (Sf

2, τf, Ss
2, τs) for both 1Hα–13Cα and 1H–15N 

dynamics, shown in (A) and (B), respectively. We only show the slow timescale, to illustrate that the distribution is 

rather narrow, in particular for 1Hα–13Cα, and similar for both spins, an argument that this is likely to be a single, 

concerted motion  

4 Results and Discussion 
We begin investigating the HET-s dynamics by fitting both data sets (15N and 13Cα) 

independently to dynamic models. Previously, it has been shown that when incorporating both 

R1 and R1ρ at multiple external fields and multiple spin-locking strengths (and spin-locking 

frequency offsets), that a three-timescale fit provides a statistically significant, better fit of the 

relaxation data (Zinkevich et al. 2013). Therefore, we will investigate both two- and three-

timescale fits for our results. We begin by fitting the 15N and 13Cα data sets to models that 

incorporate two timescales of motion, and, therefore, four fit parameters (Sf
2, τf, Ss

2, τs). Figure 

10 shows the site-specific slow correlation times resulting from this fit (note that for some 

glycine residues, the two Hα yield different chemical shifts and can be analyzed separately, 

and so here and throughout the paper two values appear for these residues). The results 

indicate that there is slow motion detected throughout the HET-s (218-289) fibril. Furthermore, 

timescales of ~10 µs indicate concerted motions of at least several atoms or more (Henzler-

Wildman and Kern 2007). In fact, the narrow distribution of timescales for 1Hα–13Cα and 1H–
15N suggests that the entire molecule may see a single, slow motion- similar to results of a 

recent study on crystalline Ubiquitin (Ma et al. 2015). Since a concerted motion should have 

approximately the same correlation time for all residues, we will require that all residues are 

fitted to the same slow correlation time, τs. This has the added benefit that we reduce the 

number of parameters required to fit our data. 

To find τs, its value is varied and the complete experimental data set is refit at each 

value, by optimizing the remaining parameters, which are Ss
2, τf, and Sf

2 if a two-timescale 
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model is used, and Ss
2, τi, Si

2, τf, and Sf
2 if a three-timescale model is used (s, i, and f indicate 

slow, intermediate and fast). Then the reduced-χ2 (sum of χ2 for all residues, divided by total 

number of measured parameters minus number of fit parameters) is calculated at each value 

of τs to determine the best value for each model. This is done both for 15N and 13Cα data sets, 

and for both two-timescale and three-timescale models, and plotted against the slow 

correlation time, τs, shown in Figure 11A and B, respectively. As one sees, the best reduced-χ2 

value for both nuclei is found when using the three-timescale model. For the two-timescale 

model, the best fit value of τs was found to be 6.2 µs and 4.1 µs for 1Η–15N and 1Hα–13Cα slow 

motion, respectively. For the three timescale model, τs was found to be 14.7 µs and 8.7 µs, for 
1H–15N and 1Hα–13Cα motion, respectively. 

 
Figure 11 Statistical comparison of two- and three-timescale models for 15N and 13Cα. (A) shows the reduced–χ2 

(calculated over all residues) for the two-timescale model for both 15N and 13Cα data as a function of the slow 

correlation time, τs, which is set to be the same for all residues. (B) shows the reduced-χ2 for the three-timescale 

model for both 15N and 13Cα data as a function of τs. (C) is the residue specific difference of the AIC parameter for 

the two- and three-timescale models for 15N, and (D) is the difference for 13Cα, where positive values indicate that 

the three-timescale model better fits the data 

 

0

20

40

60

80

−10

0

10

20

230 240 250 260 270 280
GRNSAKDI RT EE R RA VQLGNVVTAAAL TTNSVETVVGKGESRVLI GNEYGG GK FKIDAIV

Residue

0

5

10

15

 

 
A

C

B

D

AI
C

 (2
 t.

s.
 –

 3
 t.

s.
)

AI
C

 (2
 t.

s.
 –

 3
 t.

s.
)

15N

13Cα

2 Timescales 3 Timescales

0 4 8 12 16 20 0 10 20 30

χ2
re

du
ce

d

χ2
re

du
ce

d

τs / μsτs / μs

15N

13Cα

15N

13Cα

0

5

10

15



 29 

To further investigate the choice of model, we evaluate the residue-specific fit quality 

with the Akaike Information Criterion (AIC) (Abdullah et al. 2013; Akaike 1974). This allows 

comparison of two models to determine which better fits the data, while also accounting for the 

number of fitting parameters being used.  

AIC = N ln χ 2 / N( ) + 2K . (21) 

Here, N is the number of experimental parameters (3 R1, 5 R1ρ, and 1 S2 yields N=9), χ2
 is as 

given in (20), and K is the number of fitting parameters (3 or 5 depending on whether we use 

the two- or three-timescale model, noting that we do not count the slow correlation time, τs, 

since it is fitted against the full data set and does not significantly contribute to the degrees of 

freedom of an individual residue). The model for which the AIC parameter is smaller is then 

considered to be the better model, while taken into account both fit quality and number of fit 

parameters. The results for 15N and 13Cα analysis are shown in in Figure 11C and D, 

respectively, where the difference in the AIC for the two-timescale model and the three-

timescale model is plotted against the residue number (positive values indicate that the three-

timescale model is better).  

  
Figure 12 Fit parameters for 1H–15N dynamics using a three-timescale model. (A) gives the residue specific fast 

motional amplitude (Sf
2). (B) gives the fast motional timescale (τf), plotted logarithmically. (C) and (D) give the 
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intermediate motional timescale (τi), and amplitude (Si
2). (E) gives the slow motional amplitude (Ss

2), using a 

correlation time of τs = 14.7 µs. (F) gives the reduced-χ2 of the fit. (A-E) show error bars, which approximate a 

68% confidence interval for the parameter 

 

The three-timescale model fits the majority of residues better for both data sets. In 

Figure 12 the fit is given for 1H–15N motion and in Figure 13 the fit is given for 1Hα–13Cα, with 

comparison of calculated and experimental data in Figure 14 and Figure 15. We find that 

nearly all of the residues for which the two-timescale is the better-fit model have either Si
2 or 

Sf
2 close to one in the corresponding three-timescale model, indicating very little motional 

contribution from the intermediate or fast motion. Because the contributions of one of the three 

correlation times are minimized, the model is reduced to a form that is very similar to the two-

timescale model. Also, the amplitudes and correlation times of the remaining motions are very 

similar to those in the two-timescale models (see Figure 16 and SI Figure 10). These 

correlations first indicate that use of the bootstrap method to evaluate error on experiment 

parameters, and subsequent usage of those errors to evaluate χ2 via (20), gives reliable 

evaluation of model quality. Also, it allows us to rely only on the three-timescale model, since it 

results in a fit that is similar to the two-timescale model where the AIC parameter favors that 

model. A side effect of the minimal contribution of one of the motions to the three-timescale 

model is that it can cause a sharp increase in the error of the corresponding correlation time, 

since one must be able to measure significant changes in the experimental parameters to be 

able to accurately characterize the correlation time.  
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Figure 13 Fit parameters for 1Hα–13Cα dynamics using a three-timescale model. (A) gives the residue specific 

fast motional amplitude (Sf
2 ). (B) gives the fast motional timescale, plotted logarithmically. (C) and (D) give the 

intermediate motional amplitude (Si
2)  and timescale (τi), respectively. In (C), we highlight fibril core residues 

pointing outward in grey (excluding those between β-sheets- see Figure 1). (E) gives the slow motional amplitude 

(Ss
2), using a correlation time of τs = 8.7 µs. (D) gives the reduced-χ2 of the fit. (A) – (E) show error bars, which 

approximate a 68% confidence interval for the parameter 
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Figure 14 Experimental parameters for 1H–15N dynamics fitted to a three-timescale model. (A) – (E) give 

measured R1ρ for different spin-locking strengths (bars), versus values calculated from the fitted model (black 

dots). (F) – (H) give R1 measurements and calculated values for different magnetic fields. (I) gives measured 

versus calculated S2, measured with shifted REDOR. All measurements also include error bars, indicating one 

standard deviation on the measurement data, determined via bootstrapping  

The results of fitting of relaxation data can depend critically on the model chosen. For 

example, when fitting 1Ηα–13Cα data to a three-timescale model, we note that a trend 

emerges: the Si
2 is correlated to the position of the side-chain, where residues that point into 

the fibril core have higher values of Si
2 (less motion) and those that point outwards towards the 

solvent have lower values (more motion). Interestingly, when 13Cα data is fitted to a two-

timescale model, the same trend emerges, but for values of Ss
2, which is assumed to be a 

global motion, as shown in Figure 16. This represents a critical failure of model-free fitting: a 

motion that is residue-dependent becomes part of the fit of a global motion. A model that is too 

simple can easily mix two separate motions into one timescale of the model, yielding data that 

is impossible to interpret reasonably. A similar problem arises when analyzing 1H–15N 

dynamics with only a two-timescale model, where most of the nanosecond range motion is 

omitted entirely from the fit (see SI Figure 10). Both situations demonstrate that determination 

of the best model via statistical tests is important. However even then, a smaller or lower 

quality data set may not have the information content to satisfy a more complex model, and so 

statistical tests would indicate a simpler model is a better fit. This does not mean that the 

simpler model adequately describes the dynamic behavior, only that the data is insufficient to 

support a more complex model. This can result in a fit that combines physically distinct 
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motions into a single motion and correlation time. Then the physical meaning of those motions 

may be obscured and the resulting fit parameters can be distorted.  

 
Figure 15 Experimental parameters for 1Hα–13Cα dynamics fitted to a three-timescale model. (A) – (E) give 

measured R1ρ for different spin-locking strengths and MAS frequencies (bars), versus values calculated from the 

fitted model (black dots). (F) – (H) give R1 measurements and calculated values for different magnetic fields. (I) 

gives measured versus calculated S2. All measurements also include error bars, indicating one standard deviation 

on the measurement data, determined via bootstrapping 

Our analysis shows a discrepancy in the best-fit slow correlation times for the analysis 

of 15N and 13Cα data, yielding correlation times of 14.7 µs and 8.7 µs, respectively. Although 

not orders of magnitude apart, the difference is surprising since we postulate that a single, 

global motion is responsible for the measurement of a microsecond timescale, and so ideally 

the correlation times would be in full agreement. One potential reason for the difference is that 

we do not fully account for coherent effects in R1ρ measurements. We do note that, in 

particular for 13Cα data, coherent effects are expected to produce notably different trends for 

R1ρ than motion, as was shown in Figure 8. There, R1ρ that is calculated as a result of coherent 

effects (1H-flipping) for spin-lock strengths of 25 kHz and MAS of 40 kHz, and spin-lock 

strength of 48 kHz and 60 kHz fit poorly to the dynamic model. Therefore, to check that 

coherent effects are not contributing significantly to our fit of slow motion, we re-fit 1Hα–13Cα 

dynamics data while excluding R1ρ data measured with 25 kHz/40 kHz, and 48 kHz/60 kHz 

spin-lock/MAS frequencies, and then predict those data points. The result is shown in SI 

Figure 13, where we see that most points are very well predicted- indicating that the motional 

model is reasonable and unlikely to be the result of coherent effects on the R1ρ. An additional 
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consideration is that since the source of the microsecond motion is not yet clear, it is possible 

that the model-free approach does not adequately describe it, and so modeling of 13C versus 
15N slow dynamics could result in slightly different fitted timescales.  

 
Figure 16 Fit parameters for 1Hα–13Cα dynamics using a two-timescale model. (A) gives the residue specific fast 

motional amplitude (Sf
2 ). (B) gives the fast motional timescale, plotted logarithmically. (C) gives the slow motional 

amplitude (Ss
2), using a correlation time of τs = 6.2 µs. (D) gives the reduced-χ2 of the fit. In (C), we highlight fibril 

core residues pointing outward in grey (excluding those between β-sheets- see Figure 1). (A) – (C) show error 

bars, which approximate a 68% confidence interval for the parameter 

When studying slow motions, it is useful to notice that the slow correlation time of a 

global motion, τs, and the site specific slow order parameters, Ss
2 can be fairly well determined 

only based on R1ρ data. In this case, one may fit the R1ρ data while only modeling a single, 

slow timescale. We do so, and plot the reduced-χ2 for all residues as a function of τs in Figure 
17A, obtaining the best fits for τs = 6.2 µs for 1H–15N and τs = 4.1 µs for  1Hα–13Cα data. These 

are identical to the rate constants found for the two-timescale model using the full data set. 

This is because when fitting the full data set for the two-timescale model, the fast timescale is 

usually in the picosecond range of motion, and so has little effect on the calculated R1ρ. 

Similarly, the microsecond motion has no effect on the calculated R1 values, and since the Ss
2 

are very near to one, it also does not contribute significantly to the total order parameter. The 

resulting residue specific values for Ss
2 are also very similar to those determined using the 
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two-timescale model, as shown in Figure 18 (see SI Figure 14 for fit of the data). However, 

there is a systematic overestimation of the Ss
2 determined using only R1ρ as compared to using 

the full data set. This is because fast motion reduces the effective dipole coupling, such that 

the slower motion does not induce as much relaxation, requiring larger motions to account for 

the same R1ρ rate constants (see Eq. (1)); when fitting only R1ρ, one does not determine the 

faster motions and, therefore, it is impossible to account for the scaling.  

 
Figure 17: Calculation of the slow correlation time, τs, using only R1ρ data. (A) shows the reduced-χ2 calculated 

for all residues as a function of the slow correlation time for both 1H–15N data and 1Hα–13Cα data. The model 

includes only one slow motion. (B) shows the reduced-χ2 calculated for all residues, but the model includes both a 

slow timescale, and an intermediate timescale. The correlation times and order parameters are not fitted for the 

intermediate timescale- only a contribution to the R1ρ from intermediate timescale motion is fitted, which is 

independent of MAS and spin-lock frequency. 

Alternatively, R1ρ values may be fitted to a slow timescale, and an intermediate 

(nanosecond) timescale. In this case, the contribution of the intermediate timescale to R1ρ will 

be the same for all experimental conditions (see Eqs. (1), (5), and (6)), where the dependence 

of R1ρ on the MAS and field strength vanishes for sufficiently short correlation times). Then, it 

will be impossible to characterize the intermediate timescale with Si
2 and τi, but the data can 

nonetheless be fitted with a constant contribution to all R1ρ measurements for a given residue 

due to the intermediate timescale motion (R1ρ offset). We perform this fit, for various values of 

τs, and plot the reduced-χ2 for each in Figure 17B, obtaining best fits for τs = 18.5 µs for 1H–15N 

and τs = 7.0 µs for 1Hα–13Cα motion. The values are very similar to those found for the three-

timescale model, although no longer identical (as compared to 14.7 µs and 8.7 µs). Values of 

Ss
2 are also similar, although again biased because scaling of the relaxation by faster motions 

is not accounted for (see SI Figure 15, and SI Figure 16 for fit of the data). Some differences 

emerge because the intermediate (nanosecond) motion affects all measured parameters (R1, 

R1ρ, and S2). Then, influence of R1 and S2 on the intermediate motion affects its contribution to 
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calculation of R1ρ, resulting in minor changes to the calculated slow correlation time. Ultimately, 

the extraction of information on slow, microsecond motion from only R1ρ data is complicated by 

contributions to R1ρ from intermediate motion. However, if the slow motion is global, the fact 

that all residues can be fitted to one correlation time makes a reasonable analysis possible, 

whereas determination of residue-specific slow correlation times and amplitudes along with 

contributions to R1ρ from intermediate timescale motion would be extremely difficult. 

 
Figure 18: Ss

2 determined for 1H–15N and 1Hα–13Cα motion using only R1ρ data. Colored dots show Ss
2 for which 

only R1ρ data was fitted to a single, slow motion, with a correlation time of 6.2 µs for 15N data and 4.1 µs for 13Cα 

data. Grey dots show Ss
2 determined while fitting the full data set to a two-timescale model, showing that usually 

fitting to the full data set predicts a lower Ss
2 (larger motion). 

5 Conclusions  
The combined use of R1, R1ρ, and S2 data for both 1Hα–13Cα and 1H–15N has been 

shown to be a powerful addition to dynamics analysis, and allows the descriptions of the 

dynamics by three timescales of motion, representative of a slow, global motion, intermediate, 

and fast motion. Measurement of similar slow motion on both nuclei gives further evidence of 

the presence of a slow motion, whereas nanosecond and picosecond motions showed 

differences in trends between 1Hα–13Cα and 1H–15N, indicating that they provide information 

on different motions. Of course a three-timescale model is still a rather crude description of the 

complex dynamics of a protein fibril but the three-timescale fit of both 1H–15N and 1Hα–13Cα 

motion pushes the limits of the information content of our dynamics data, although is supported 

by statistics that show that most residues are better fit with a three-timescale model. Our ability 

to separate three timescales relies heavily on the fact that it was possible to use a single slow-

motion correlation time for all residues, reducing the number of parameters being fitted for 

each residue.  

Having a sufficiently complex model to represent the protein motion is critical. In our 

case, if only two timescales are used to describe 1Hα–13Cα motion, then slow and intermediate 
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motion of 1Hα–13Cα are interpreted as a single motion, and the physical meaning of both 

motions becomes highly convoluted, since features of both motions are mixed together into a 

single parameter set. Similarly, when 1H–15N motion is fitted to a two-timescale model, most 

nanosecond timescale motion is excluded from the resulting model. One may use statistical 

tests to verify that a more complex model is supported by the data, as we have done with the 

AIC parameter, but when the statistical test supports usage of a simpler model, it does not 

prove that the real motion is well described by the simpler model. It then may be necessary to 

improve the experimental data set to obtain a good description of the real motion. In our case, 

most of the residues for which the simpler, two-timescale model was favored by the AIC 

parameter, the three-timescale model also indicated that one motion contributed only slightly to 

the dynamics behavior, giving good agreement between results of model fitting and statistical 

analysis. Of course similar errors may be introduced into our three-timescale model as 

additional timescales certainly exist but cannot be characterized by present day experiments. 

We were able to obtain evidence of global motion in the HET-s fibril, with similar slow 

correlation times (τs) for both 1H–15N and 1Hα–13Cα models. Fitting of slow motion on both 

nuclei with similar correlation times shows that the slow motion is unlikely to be an 

experimental artifact. The ability to make a direct comparison of the slow motion relies on the 

fact that it is a global motion, and so should be highly correlated. Still, combining data from 

multiple nuclei can be worthwhile, as shown by Lamley et al., where the motion of the peptide 

plane can be modeled from combined 15N and 13C’ (backbone carbonyl) data (Lamley et al. 

2015). This is not true for 1H–15N and 1Hα–13Cα that is not global, since the bonds to 13Cα do 

not lie in the peptide plane. Therefore, whereas combination of 15N relaxation and 13C’ motion 

may be used to more accurately characterize the concerted peptide plane motion, combination 

of 15N and 13Cα relaxation can highlight different motions. Of course, all nuclei can be 

combined to investigate global motions, and it is possible for a single local motion (several 

nuclei) to be observed on both the 15N and 13Cα nuclei, although in our study, 15N and 13Cα 

motions were not strongly correlated. 

If motional parameters acquired from different nuclei are compared as a means for 

model verification, or analyzed in concert, it becomes critical that the model used to calculate 

R1ρ is correct. Approximations in the R1ρ calculation can still yield qualitative results for a single 

type of nucleus but the degree of error will vary for different types of nuclei. Therefore, one 

should rely on more accurate simulations rather than Redfield-theory based methods for slow 

motions particularly when multiple nuclei are being used. Furthermore, it is important to 
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account for magnetization decay induced by 1H inversion, both in order to maintain agreement 

between different nuclei and additionally to avoid misinterpreting such 1H inversion induced 

magnetization decay as slow motion. Although many of the errors that we have corrected here 

are relatively small, the errors can accumulate, making the additional effort required for an 

accurate analysis worthwhile.  
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