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Cellular forces and matrix assembly coordinate
fibrous tissue repair
Mahmut Selman Sakar1,*,w, Jeroen Eyckmans2,3,*, Roel Pieters1, Daniel Eberli4, Bradley J. Nelson1

& Christopher S. Chen2,3

Planar in vitro models have been invaluable tools to identify the mechanical basis of wound

closure. Although these models may recapitulate closure dynamics of epithelial cell sheets,

they fail to capture how a wounded fibrous tissue rebuilds its 3D architecture.

Here we develop a 3D biomimetic model for soft tissue repair and demonstrate that

fibroblasts ensconced in a collagen matrix rapidly close microsurgically induced defects

within 24 h. Traction force microscopy and time-lapse imaging reveal that closure of

gaps begins with contractility-mediated whole-tissue deformations. Subsequently,

tangentially migrating fibroblasts along the wound edge tow and assemble a progressively

thickening fibronectin template inside the gap that provide the substrate for cells to complete

closure. Unlike previously reported mechanisms based on lamellipodial protrusions and

purse-string contraction, our data reveal a mode of stromal closure in which coordination of

tissue-scale deformations, matrix assembly and cell migration act together to restore 3D

tissue architecture.
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C
losure of open gaps within a tissue, a morphogenetic
process involving rearrangement of cells and assembly of
extracellular matrix (ECM), is fundamental for normal

development and repair of damaged tissues and organs1–3.
During embryogenesis, many tissue structures such as the
neural tube4,5, eyelid6 and dorsal epidermis7,8 require closure
as a key step in forming a contiguous anatomical structure. In
adults, tissue closure is again invoked during the wound-healing
response after injury, to restore mechanical integrity and
function9–11.

The mechanical basis of wound healing has been studied
using in vitro models that measure cellular forces during
epithelial gap closure through collective cell migration on
planar substrates12–18. These studies revealed one class of closure
that involves covering a bare surface in which leading cells in an
advancing epithelial monolayer migrate across the surface in
an adhesion-dependent manner14–16. Across non-adhesive gaps,
epithelial cells employ a different mechanism by generating
traction forces parallel to the wound margin through the
contraction of a multicellular actin purse string to close the
gap17,18. Although these mechanisms explain many aspects of
re-epithelialization, it is unclear how these findings relate to
repair of fibrous tissues wherein mesenchymal cells ensconced in
a fibrillar matrix restore the three-dimensional (3D) architecture
of the tissue.

Here we introduce a 3D bioengineered culture system to study
the cellular and biophysical processes during stromal gap closure.

We generated arrays of 3D microscale tissues (microtissues)
consisting of 3T3 fibroblasts embedded in a type I collagen
matrix19. The microtissues were suspended between flexible
cantilevers that simultaneously constrain the microtissues
and report microtissue tension in real time. After formation,
microtissues were damaged with a microsurgical knife
mounted to a microrobotic manipulation platform and closure
was monitored using time-lapse confocal microscopy. We
demonstrate that, in contrast to mechanisms previously
described by planar in vitro models, fibroblasts close the open
gap through the coordinated action of force-dependent
contraction of the whole tissue, circumferential cell migration
around the wound edge and assembly of fibronectin scaffolding
that allows cells to repair the gap and restore tissue integrity.

Results
Fibroblasts repair gaps in 3D collagen microtissues. To
generate microtissues, we seeded NIH-3T3 fibroblasts in a
suspension of collagen type I into microfabricated substrates
with arrays of wells containing vertical cantilevers (Fig. 1a and
Supplementary Fig. 1). Cells contracted the collagen to form a
dense fibrocellular microtissue around the caps of the engineered
cantilevers in each well. To examine the response of these
microtissues to damage, we wounded them in the centre of the
tissue with a microdissection knife mounted on a teleoperated
micromanipulator and then observed how they evolved (Fig. 1b).
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Figure 1 | Wounding and closure of 3D microtissues. (a) Schematic of microtissue device and workflow. 3T3 fibroblasts are seeded in a collagen type I

suspension, and after tissue formation microtissues are damaged using a microdissection knife. (b) Micrographs of microtissues before, during and after

damage. The blue zone demarcates the gap area (original magnification � 2.5 and scale bar, 500mm; and � 10 and scale bar, 100mm). (c) Temporal

sequence of wound area showing opening and smoothing of the wound edge (original magnification �40and scale bar, 50mm). (d) Staining for F-actin

(Phalloidin, green) and nuclei (Hoechst, blue) showing alignment of cells at the wound edge (original magnification �63 and scale bar, 50mm). (e) Temporal

sequence of micrographs showing closure (original magnification � 15 and scale bar, 100mm). (f) Visual representation of spatiotemporal dynamics of gap

area during closure. (g) Graph showing gap area in function of time for three tissues with different initial wound size (each colour represents one gap).
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Within minutes after the full-thickness incision was made, the
gap further widened (Fig. 1c). As the area of the gap stabilized
over the following several hours, the rough wound edge
smoothened to form an ellipse (Fig. 1c), a process associated with
alignment and elongation of the cells along the circumferential
boundary of the wound edge (Fig. 1d). Over the course of the
next 24 h, the gap progressively closed, while maintaining its
elliptical shape and keeping the centroid position of the wound
stationary (Fig. 1e and Supplementary Movie 1). Temporal
analysis of the gap area (Fig. 1f) showed a constant rate of closure
(1,344±150 mm2 h� 1) throughout the process independent of
the initial gap size (Fig. 1g), until the gap closed.

Closure is driven by contractility rather than proliferation.
During wound healing, cell proliferation is necessary to populate
the wound with ample matrix-producing fibroblasts20. To test
whether cell proliferation and resulting tissue expansion could
contribute to the filling of the gap, we administered the nucleotide
analogue 5-ehynyl-20-deoxyuridine (EdU) to label fibroblasts
undergoing proliferation during closure and treated microtissues
with Aphidicolin, a mitogenic inhibitor. EdU uptake was
substantial over the 24 h of wound closure; however, whereas
aphidicolin nearly eliminated EdU uptake by the cells,
microtissue gap closure remained intact (Supplementary Fig. 2
and Supplementary Movie 2).

Cell-generated tension has previously been shown to be critical
to closure of gaps16. To investigate this possibility in our
model, we monitored microtissue tension across two
deformable cantilevers during repair (Fig. 2a). We observed the
baseline tissue tension rapidly decline after damage (coincident
with the initial gap widening), followed by a progressive increase
that peaked at 10 h, and settled at a steady state consistently close
to but slightly below the baseline tension (Fig. 2b). The dynamic
mechanical response triggered by wounding suggests a potential
role for cell-generated forces in gap closure. We targeted the small
G-protein Rho, a central regulator of actin dynamics and
cytoskeletal contractility. Activation of Rho signalling with a
cell-permeable form of cytotoxic necrotizing factor catalytic
domain-derived protein increased the closure rate, whereas Rho
inhibition with a cell-permeable C3 transferase decreased closure
(Fig. 2c). We next examined whether the effects of Rho signalling
on wound closure resulted from its effects on actin filament re-
organization or myosin II activity. As expected, disruption of the
actin cytoskeleton with Cytochalasin D completely abolished the
closure response. Inhibition of either non-muscle myosin II
activity with Blebbistatin or Rho kinase activity with Y-27632
also significantly decreased the closure rate, similar to the effects
of inhibiting Rho signalling. In sharp contrast to these findings,
activation of Rho signalling in the two-dimensional (2D)
wound assays slowed down closure, whereas inhibition of
Rho signalling or contractility accelerated closure, whether the
closure occurred across an elliptical gap (Fig. 2d) or a classical
parallel scratch wound (Supplementary Fig. 3). Taken together,
these data indicate that cellular contractility is required for
closure of the gaps in our 3D model, and that the mechanism
for closure appears to be different in 2D versus 3D gaps
(Supplementary Movie 3).

Contractility controls migration along the wound edge. The
contractility requirement for closure and the alignment of cells
along the wound edge suggested the possibility that the fibroblasts
adopted an actomyosin purse string, as has been described as a
key element to gap closure by the epithelium21,22. However,
immunofluorescence imaging of phosphorylated myosin
light chain was characterized by discontinuous, punctate

distributions inconsistent with purse strings (Supplementary
Fig. 4). Furthermore, time-lapse movies of cells (Supplementary
Movie 4) showed that neighbouring fibroblasts followed
non-correlated trajectories, especially around the wound edge
(Fig. 3a), which are distinct from the collective motions described
for epithelial sheets13,23. Cells at the wound edge migrated
tangentially in both directions along the circumference of
the wound, whereas cells located distal from the wound edge
generally moved radially towards the centre of the gap (Fig. 3b,c).
As cell-generated forces drive gap closure (Fig. 2), we
hypothesized that this could be mediated via cell
migration. Indeed, treatment of microtissues with Y27632 or
Blebbistatin reduced more the maximum migration speeds of
cells (Fig. 3d) located at the wound edge than those distal from
the wound edge.

Fibroblasts tow fibronectin into the gap area. The non-corre-
lated movements of the fibroblasts suggested that cells primarily
coordinate with the ECM rather than via cell–cell adhesions, to
mediate the gap closure response. Indeed, knockdown of
N-cadherin in 3T3 fibroblasts did not impede gap closure
(Supplementary Fig. 5). This finding led us to investigate how the
ECM evolved during repair. The microtissue matrix consists
mainly of type I collagen; thus, we asked whether closure was
primarily driven by the contraction of the existing collagen
matrix, or the process involved assembly of new matrix inside the
gap. Time-lapse microscopy of gap closure in microtissues
containing fluorescently tagged collagen type I matrix showed
that reduction of gap area for the first 10 h was primarily
associated with contraction of the hole within the existing
collagen matrix (Supplementary Movie 5). Interestingly, a later
stage of closure followed in which the cells continued to enter and
fill the gap area without any collagen matrix (Fig. 4a and
Supplementary Movie 5).

The lack of type I collagen within the gap suggested that cells
employed a second, more provisional matrix for later stages of
wound closure. Indeed, fluorescently labelled fibronectin spiked
into the medium showed that fibronectin was being deposited
into the gap throughout the closure (Fig. 4a,b). High-resolution
time-lapse microscopy revealed that fibroblasts first migrated
circumferentially around the wound edge, while towing,
remodelling and extending existing fibronectin fibres into the
gap (Fig. 4c and Supplementary Movie 6). Furthermore,
fibroblasts also deposited cellular fibronectin during this
remodelling process (Fig. 4d). The newly formed fibrillar
fibronectin template then served as a substrate for cells to
migrate further into the gap area (Fig. 4c). During the final phases
of healing, a single layer of cells then fully closed the gap with this
fibronectin, and then this layer thickened and reinforced as
additional cells entered the region, ultimately resulting in a
multilayered, matrix-rich tissue.

Cell-matrix adhesion governs provisional matrix assembly.
Remodelling of ECM is regulated by the binding of matrix
proteins to cells through integrin receptors. Once bound to
ligands, integrins cluster and activate focal adhesion kinase
(FAK), leading to assembly of focal adhesions and modulation of
Rho GTPases24,25. In our model, inhibition of FAK kinase activity
using the small compound PF-228 abolished closure (Fig. 5a).
Interestingly, despite FAK is activated by most integrins26,
PF-228 primarily hindered closure 8–10 h after injury, which
coincided with the onset of fibronectin scaffolding. To further
elucidate the role of integrins and cell–matrix adhesion in stromal
wound closure, we treated tissues with blocking antibodies that
affect interactions with fibronectin. Using a5- or b3-integrin
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antibodies targeting a5b1 and aVb3, we observed a small
decrease in closure rate, during the collagen contraction phase of
gap closure, and a more pronounced inhibition of the fibronectin-

dependent phase of closure (Fig. 5b). These findings are
consistent with a more critical role for fibronectin in the later
stages of gap closure.
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Figure 2 | Gap closure is mediated by cytoskeletal contractility.

(a) Healing response occurs in microtissues anchored to two cantilevers,

allowing measuring contractility during gap closure. (b) Time course of

microtissue tension generated during healing. Each dot represents the

average tension for five microtissues±s.e.m. Dashed line represents the

baseline tension before microtissue damaging. (c) Relative closure rate

measured at 10 h after damage in the presence of RhoActivator II (RhoAct),

RhoInhibitor (RhoInhib), Y27632, Blebbistatin (Blebbi) and Cytochalasin D

(CytoD) (N¼ 6 to 12 microtissues per experiment, 3 experiments).

(d) Closure rate of 2D elliptical scratch wounds in the presence of

cytoskeletal drugs (N¼ 3 per experiment, 3 experiments). All bar graphs

represent average ±s.e.m. Statistical analysis: analysis of variance

(ANOVA), post-hoc Dunnett’s test for comparison with the dimethyl

sulfoxide (DMSO) control, *Pr0.05, **Pr0.01 and ***Po0.001. Scale bar,

100mm (in all images).
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Figure 3 | Gap closure is mediated by cell migration. (a) Two frames of

Hoechst labelled 3T3 fibroblasts in a wounded microtissue taken at 0 and

12 h of a time-lapse sequence during closure. Intermittent tracks of nuclei

show non-correlated migration between neighbouring cells. (b) Vector

fields showing net displacements for cells located at the wound edge versus

100 mm distant of the wound edge during closure. (c) Windrose plots

displaying the frequency of migrating cells (%) versus the radial migration

angle (0� means displacement towards the gap, 90� means tangential

movement). (d) Histograms showing the maximum speed of cells distant of

the wound edge when treated with dimethyl sulfoxide (DMSO), Blebbistatin

and Y27632 (N¼ 700–1,000 cells from 4 microtissues per condition,

Kruskal–Wallis test, post-hoc test: Dunn Method For Joint Ranking with

DMSO condition as control, *Po0.05 and ***Po0.001). Scale bars,

100 mm.
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Discussion
Cells employ different mechanisms to close gaps during
morphogenesis. During dorsal closure, epithelial cells assemble
a contractile multicellular actin structure that delineates the
wound edge and acts as a purse string27,28. Through coordinated
actions of pulling on the actin ring and altering the shape of
the cells surrounding the wound, the gap area narrows. Once the
opposing epithelial fronts are within filopodial reach of one
another, cells ‘zip’ the wound edges together11. A similar
zippering mechanism is used by neural ectodermal cells to close
the hindbrain and the spinal cord in mammals29. In contrast,
closure of the midbrain involves the formation of flexible, motile
cell extensions and cellular bridges between the closing folds5. In
our model, we did not see evidence for these previously described
closure mechanisms. Instead, gap closure for stromal tissue
appeared to be a staged process comprising a tissue contraction
stage and a fibronectin scaffolding stage (Fig. 5c). The deposition

of new scaffolding was further characterized by tangentially
moving fibroblasts at the wound edge that assembled fibronectin
into fibrillar networks within the gap, thus providing a
provisional substrate for cell entry into the gap area. Once the
opposing gap edges were close to each other, fibroblasts were
able to span the gap and reinforce the region by thickening
the tissue in the vertical plane (Fig. 5d). Interestingly, a
similar closure mechanism involving ECM remodelling has
been observed during eyelid closure in embryonic development.
In this process, epidermal cells at the eyelid border pull on
their surrounding ECM and intercalate perpendicular to the
closure axis, a process dependent on a5b1-integrin/fibronectin
interactions6. In agreement with these findings, we observed a
similar dependence of gap closure on fibronectin-binding
integrins and FAK signalling, although here intercalation did
not occur. The fact that our model appeared to capture a distinct
wound contraction phase and a deposition of provisional new
matrix, to complete healing, further highlights the role of distinct
cell–ECM processes to control this morphogenetic process.

Actomyosin contractility provides a central driving force for
mediating many of the major structural reorganizations
during morphogenesis2. Here, by establishing an approach to
measure such forces during the repair of gaps, we demonstrated a
staged process comprising relaxation after damage, followed by
tissue contraction and a steady-state sub-baseline tension stage.
Whereas rapid collagen contraction has been described in
fibroblast-populated collagen lattices30, the demonstration of a
relaxation phase and matrix deposition stage on either end of this
process may provide a more complete picture of wound healing.
Although such tension profiles have not yet been investigated
in vivo after injury, the presence of such dynamics could regulate
the wound-healing process at multiple levels. For example,
transient loss of contractility has been described to stimulate
increased motility31, and increased myosin activity is not only
critical for ECM and tissue contraction, but also important for the
assembly of fibronectin matrix32–34. Thus, there are several links
between cytoskeletal forces and the many ensuing cellular
remodelling events engaged during wound repair, and
additional approaches to investigate and deconvolve these links
are needed.

In adult skin, the tissue movements of wound repair involve
re-epithelialization and fibrous tissue contraction10. Hence,
bringing the wound margins together is a collective effort of
epithelial cells and fibroblasts. Experiments with animal and 3D
organotypic models revealed two distinct mechanisms for the
repair of the dermis35,36. In a first mechanism, myofibroblasts
contract the central granulation tissue in the wound to bring
the wound margins closer37. Alternatively, fibroblasts residing
at the wound edge can pull the intact dermis inwards by
directional mass migration towards the centre of the wound38. In
this latter mechanism, granulation tissue is not required for
closure. Similarly, in our in vitro model, gaps spontaneously
closed in the absence of a granulation tissue. The mechanical
conditions and cellular origin that require the formation of a
granulation tissue for the closure of full thickness wounds is
unknown. A bioengineered model, such as ours, which allows one
to controllably re-introduce the complexity of a wound
environment, could provide a critical new strategy to help parse
out the role of different cell types, matrix components,
contractility and tissue remodelling in dermal tissue repair.

In summary, this study provides a new model to examine how
cells are able to fill a void in free space, and demonstrates that
stromal cells can close a tissue gap through the coordinated action
of matrix contraction, cell migration and ECM remodelling.
Importantly, morphogenetic events such as described herein
involve spatial reorganization and deformation of ECM that
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cannot be captured by planar substrates. Hence, this
bioengineered 3D model of wound closure may become a
valuable tool to investigate the underlying mechanics of gap
closure and ECM remodeling.

Methods
Device fabrication. Devices were fabricated as described previously19. Briefly,
layers of SU-8 photoresist (Microchem) were patterned onto silicon wafers by
successive spin coat, alignment, ultraviolet exposure and baking steps. All masters
were developed in a single step in propylene glycol mehyl ether acetate (Sigma)
followed by hard bake. Polydimethylsiloxane (PDMS, Sylgard 184, Dow-Corning)
microtissue substrates were moulded from the SU-8 masters. Before cell seeding,
the PDMS templates were sterilized in 70% ethanol followed by ultraviolet
sterilization for 15 min before treatment with 0.02% pluronics-F127 (Sigma)
solution for 10 min at room temperature.

Cell culture. NIH 3T3 cells (American Type Cell Culture) were expanded in
high-glucose (4.5 g l� 1) DMEM containing (GIBCO) 10% bovine serum and
100 U ml� 1 Penicillin and 100 mg ml� 1 Streptomycin. Passage 4 to Passage 18
cells were used in our experiments.

Microtissue formation and wound repair model. One million 3T3 cells were
suspended in 2 mg ml� 1 liquid neutralized collagen type I from rat tail
(BD Biosciences) and seeded in the device. The entire assembly was centrifuged

to drive cells into the chambers. Excess solution was removed, leaving solution only
within the chambers, and the remaining constructs were centrifuged once again in
an inverted configuration to resuspend the cells into the collagen matrix before
polymerization. A few hours after polymerization, we observed the spontaneous
contraction of the collagen matrix by the cells. Cantilevers incorporated within
each chamber spatially restricted the contraction of the collagen matrix, whereby
the contracting gels slide up the cantilevers and are then caught by the larger end
caps, resulting in a large array of microtissues anchored to the tips of the
cantilevers (Supplementary Fig. 1). To visualize the collagen and fibronectin
matrix, 4% (w/w) Alexa-568-conjugated collagen (Alexa Fluor 568 labelling dye
from ThermoFisher, A-20003) was mixed with the unlabelled collagen and
Alexa-488-conjugated fibronectin (from human plasma, 8 mg ml� 1, Alexa 488
labelling dye from ThermoFisher, A-20,000) was added to the medium during
microtissue formation. After overnight incubation at 37 �C, cells contracted the
collagen matrix around the engineered cantilever pillars and formed microtissues.
Full-thickness incisional wounds were generated using a diamond dissecting
knife (type MDL, Electron Microscopy Systems, #72029) mounted on an XYZ
micromanipulator (SLC-2040, SmarAct GmbH) through a 3D printed plastic arm.
The microtissues were cut layer-by-layer by teleoperating the arm at increasing
depths using the visual feedback from the microscope as a guide.

Inhibitor experiments. Medium containing pharmacological inhibitors was added
just before damaging the microtissues. In this study we used RhoActivator II
(10 ng ml� 1, Cytoskeleton), RhoInhibitor (100 ng ml� 1 Cytoskeleton), Y27632
(25 mM, Tocris), Blebbistatin (20 mM, Sigma), CytoD (4 mM, Sigma) and PF573.228
(5 mM, Tocris). For the antibody-blocking experiments, we added rat anti-mouse
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a5 (20 mg ml� 1, clone 5H10–27 (MHR5), Abcam) and ArH anti-mouse b3
(20 mg ml� 1, Clone 2C9.G3, Abcam). Rat IgG2a (20 mg ml� 1, Abcam, ab18450)
was used as isotype control.

Two-dimensional elliptical scratch assay. PDMS stencils with four 500-mm-tall
cylindrical pillars were microfabricated, treated with 0.2% F127 for 10 min and
placed in a 12-well plate before seeding with 3T3 fibroblasts in growth medium.
After the cells formed confluent monolayers, the pillars were removed and closure
was evaluated in the presence of cytoskeletal drugs using time-lapse microscopy.

Time-lapse microscopy. For wide-field imaging, microtissues were labelled with
Hoechst 33342 (Sigma), to visualize the nuclei of the cells. Phase-contrast and
fluorescent images were captured every 30 min for 24 h with a Photometrics Evolve
16-bit electron-multiplying charge-coupled device camera (Photometrics) and an
A-Plan � 10 objective mounted on a Nikon Ti Eclipse (Nikon Instruments, Inc.)
microscope equipped with a live cell incubator.

To visualize fibronectin dynamics, Alexa-488-conjugated fibronectin (from
human plasma, 8 mg ml� 1) was added to the medium during microtissue
formation. The next day, medium was replaced before damaging. Twelve hours
after wounding, samples were imaged with an LD-C apochromat 63� 1.15
numerical aperture, water-immersion objective mounted to a Zeiss Axiovert 200M
inverted microscope (Carl Zeiss) equipped with a CSU10 spinning disk confocal
scan head (Yokogawa Electric Corp.) and live cell incubator. Time-lapse data were
acquired every 20 min and 3-mm spacing in the axial plane. To reduce photoxicity,
Oxyfluor (Fisher) was added to the medium (1:100). After image acquisition, the
hyperstack was processed in imageJ using noise reduction filters, log
transformation of the histogram, maximal z-projection and contrast/brightness
enhancement. To maximize contrast of the fibronectin fibres in Fig. 4c, the
histogram of maximal z-projections of image stacks taken at three different time
points was inverted and recoloured using Photoshop CS4 (Adobe).

Image processing and contractility measurements. Algorithms to measure the
wound area and the size of the tissues from time-lapse videos were implemented in
Matlab (Mathworks, MA). The programme accepts an input video and based on a
brightness threshold generates regions that fill empty spaces inside and around the
microtissues. These areas are analysed to calculate gap area, tissue width, gap shape
and tissue shape. TrackMate, a plugin for ImageJ, was used to automatically track
individual nucleus and characterize their trajectories from time-lapse videos. The
tracks were then imported into Matlab and analysed for direction of motion and
velocity. Windrose graphs were generated from histograms of several data points at
different locations within the microtissues.

Contractility measurements were performed as described in our previous
work39,40. Fluorescent microbeads (Fluoresbrite 17147; Polysciences, Inc.),
embedded in the caps of the cantilevers, were used for computerized deflection
tracking using the Spot Tracker plug-in for Fiji41. Briefly, the position of
fluorescent beads located at the top surface of the cantilevers was measured during
the course of the experiment. After recording the time-lapse data, tissues were
disintegrated with collagenase, to determine the baseline position of the same
beads. Cantilever displacements were measured by subtracting the baseline position
of fluorescent beads from the position at a given time point. Total contractility was
calculated by multiplying the sum of cantilever displacement with the spring
constant (k¼ 2.67±0.31 mNmm� 1) of the cantilevers at a PDMS–curing agents
ratio of 1:10. The spring constant of cantilevers was measured using capacitive
force sensors (FT-S100, FemtoTools GmbH) mounted on a microrobotic
manipulation platform42.

Immunohistochemistry. Microtissues were fixed with 4% paraformaldehyde in
PBS, permeabilized with 0.2% Triton X-100 in PBS, blocked in 10% Goat serum for
1 h at room temperature, followed by incubation with antibodies against
phospho-myosin light chain 2 (Thr19/Ser19) (Cell Signaling Technologies, #3674L,
1:100), fibronectin (Abcam, ab2413, 1:100), cellular fibronectin (Sigma, clone
FN-3E2, #F6140, 1:100) and N-Cadherin (Cell Signaling, clone 13A9, #14215S,
1:100) overnight at 4 �C, and detected with goat anti-rabbit Alexa 568
(1:1,000)-conjugated antibodies.

N-Cadherin knockdown experiments. 3T3 fibroblasts in p60 petri dishes were
transfected with either scrambled siRNA (AllStars Negative Control siRNA, 50 mM)
or a pool of four siRNAs targeting Cdh2 (FlexiTube GeneSolution, GS12558,
50mM) using HiPerfect Transfection Reagent (all from Qiagen). Two days after
transfection, transfected cells were seeded in microtissues, which were wounded the
next day. The remainder of the cells was re-plated on fibronectin-coated PDMS
coverslips to assess N-cadherin expression with immunohistochemistry.

Statistical analysis. Results are presented as mean±s.e.m. Statistical analysis was
performed using JMP Pro 11 (SAS Institute). Differences between experimental
conditions were compared by analysis of variance followed by post-hoc Dunnett’s
test. For the migration data, a Kruskal–Wallis test followed by a Dunn Method For

Joint Ranking post-hoc analysis was used. Significance values are indicated as
*Pr0.05, **Pr0.01 and ***Pr0.001.

Code availability. Please see Supplementary Data 1 and 2 to access the
computer code generated for processing the time-lapse images of microtissues and
quantifying tissue morphology.
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