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INTRODUCTION 
The existence of grain-scale pressure heterogeneity during metamorphism has been established over the last 
decades (see review in Moulas et al. 2013). In petrology, a well-studied example is the preservation of coesite or 
diamond inclusions in a host mineral like garnet (Chopin 1984), omphacite (Smith 1984), or zircon (Carswell et 
al. 2003). The host mineral prevents the coesite from transforming into the lower density quartz structure (Gillet 
et al. 1984; van der Molen and van Roermund 1986; Zhang 1998a; Ye et al. 2001; Barron 2005; O’Brien and 
Ziemann 2008). The coesite inclusion then can be transformed only partially to quartz. The kinetics of the 
transformation from coesite to quartz was experimentally studied (Mosenfelder and Bohlen 1997; Perrillat et al. 
2003) and these experiments show that at temperatures above 450 °C the coesite to quartz reaction will proceed 
to completion within a few hours. Therefore, the P-T conditions of the inclusion stay on the coesite-quartz 
equilibrium line which is the only place where quartz and coesite coexist and do not follow the P-T path of the 
host mineral or matrix assemblage. Such a mechanism is also known as the pressure vessel effect (Chopin 
2003). As a result we know that host minerals like garnet, clinopyroxene, zircon and diamond can sustain 
significant pressure variations of up to several GPa difference.  

Elastic models provided a solution to the inclusion-host problem where the inclusion remained at its high 
pressure while pressure in the host adapted to the matrix pressure (Gillet et al. 1984; van der Molen and van 
Roermund 1986). Later mechanical models adopted visco-elastic solutions in which pressure gradually 
decreased from the inclusion into the host (Zhang 1998a). Recently, Tajčmanová et al. (2014) used an elastic-
plastic solution to expand the mechanical feasibility of maintaining pressure variations to polycrystalline 
materials or radially cracked inclusions. 

Theoretically predicted and inferred large pressure variations were also proved by in-situ measurements in 
coesite inclusions using Raman spectroscopy (Parkinson and Katayama 1999; Parkinson 2000). The use of 
Raman methods has revolutionized consideration of the overpressures developed in inclusions (Guiraud and 
Powell 2006). These methods allowed present-day overpressures to be deduced via the experimentally 
determined shift of peaks in Raman spectra. With recent developments of Raman spectroscopy and calibration 
for pressure with Raman shift (Schmidt and Ziemann 2000) it has become accurate and precise enough to be 
used in geobarometry (Enami et al. 2007; Kohn 2014). 

Non-homogeneous pressure is documented for inclusion-host systems under stress due to difference in viscosity. 
In geological literature this is known from analytical and numerical studies where pressure and stress 
distribution for different inclusion shapes, orientation and viscosity contrasts were investigated (Kenkmann and 
Dresen 1998; Tenczer et al. 2001; Schmid and Podladchikov 2003; Schmid 2005).  Recently, Moulas et al. 
(2014) used 2D analytical solutions for the incompressible viscous flow problem in and around elliptical 
inclusions.  They found that the viscosity contrast and aspect ratio of elliptical inclusions control the magnitude 
of the pressure difference inside and outside inclusions. In addition, the inclination of the inclusion with respect 
to the bulk compression direction controls the spatial distribution of pressure. They conclude that both weak and 
strong inclusions can develop large pressure variations depending on geometrical and rheological factors.  

In multi-grain aggregates where grain shapes are generally more irregular than ellipses and viscosity may vary, 
the resulting stress and pressure distribution becomes complex (e.g. see Fig. 1 in Llana-Funez et al. 2012 and 
Fig. 4 in Tajčmanová et al. 2015). Studies of stress perturbations around inclusions involving also plastic 
deformation investigate the importance of non-homogeneous stress (and pressure) distribution on the formation 
of shear zones in polymineralic rocks (Misra and Mandal 2007). Whereas viscous stresses relax over time, 
elastic stresses will always be there as long as there is an applied load. Burnley (2013) calculated the stress 
patterns resulting from purely elastic deformation, including plastic yielding, and discussed the implications of 
these patterns for metamorphic banding. Schrank et al. (2012) investigate both experimentally and numerically 
the effects of thermal elasticity on stress distribution during heating of a granite. Other geological situations 
such as folding and fracturing bring along pressure variations as reviewed by Mancktelow (2008). 

Non-homogeneous pressure in rocks due to viscosity contrasts, geometry and orientation has been shown to 
influence metamorphic reactions. Simpson and Wintsch (1989) describe myrmekite associated with K-feldspar 
“augen”. Ruling out a magmatic origin of the myrmekite, they conclude that it formed during local stress 
differences on K-feldspar grain boundaries. Hwang et al. (2007) showed the interplay of crack formation due to 
stress concentrators around inclusions and the GRAIL reaction (garnet + rutile = kyanite + ilmenite + qtz), 
known for its barometric purposes (e.g. Bohlen et al. 1983). These studies suggest that pressure variations have 
not dissipated during metamorphic reactions and therefore do not occur independently from reactions.  
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Schmid et al. (2009) investigated the reaction rate of enstatite rim growth in a coupled kinetic-mechanical model 
based on rim-growth experiments (Milke et al. 2009). They showed that reaction rate was slowed down by the 
rheology of the matrix, manifested as different rim thickness grown around an inclusion. Furthermore, stress can 
have a direct effect on the phase equilibria. In particular, Robin (1974) documented that coherency of exsolution 
lamellae in feldspar causes elastic strains in the individual lamellae affecting the lattice parameters. For a very 
small proportion of pure coherent albite lamellae within an orthoclase grain, the values for stress correspond to 
0.6 GPa parallel to the b–axis and 2.3 GPa orthogonal to the b-axis (Robin 1974). Values of 0.9 and 2.0 GPa 
were obtained for a coherent albite precipitate in microcline (Pryer and Robin 1996). As a result, the position of 
the solvus in an equilibrium diagram is changed in case of coherency stress and is referred to as coherent solvus. 
If the pressure variations occur within a solid solution, such as plagioclase, chemical equilibrium will result in 
chemical zoning. Tajčmanová et al. (2014) developed an alternative geobarometer to infer pressure variations 
from chemical zoning by use of homogeneity of chemical potentials in which pressure was spatially varied. 

The above mentioned progress in research brings up several key questions. If there is a sufficient amount of 
arguments and models documenting the existence of pressure variations, why are isobaric models of 
metamorphic assemblages generally so successful? Are the pressure variations too small to have a significant 
effect on the main phase assemblages and textures? Or do we not recognize the evidence? For example, is the 
preservation of a prograde microstructure a result of sluggish kinetics or is it because some minerals are at a 
different pressure? 

Here we present a method based on Gibbs minimization that can be used to predict stable mineral assemblage 
and composition for systems in which pressure is not homogeneous. The main goal is to provide a method by 
which the above problems can be addressed in the future, rather than entirely solving them for specific 
observations. The presented method is a forward modelling technique to calculate equilibrium under spatial 
pressure variations that can be compared with observations. As current development in research shows that 
pressure variations can be maintained on the grain-scale during metamorphism the main motivation behind the 
development of an equilibrium method is to fit phase assemblages and chemical zoning as a result of pressure 
variation in space rather than in time. The method is first tested against results from a previously derived 
barometry method that was based on equal chemical potentials, followed by applications based on natural 
observations to explore the effect of heterogeneous pressure on phase equilibria and composition. 

METHOD 
Thermodynamic equilibrium under external forces (e.g. a fluid under gravity; Gibbs, 1906; Landau and Lifshitz, 
1987) is characterized by gradients of thermodynamic state variables (e.g. pressure) while keeping zero 
macroscopic fluxes (Landau and Lifshitz, 1987, p.236). An equilibrium formulation is used for several 
applications in chemical engineering and deep oil reservoirs for calculating compositional gradients under an 
external force such as gravity or an osmotic pressure difference across a semipermeable membrane (Gibbs 1906; 
Young et al. 1954; Miller 1956; Landau and Lifshitz 1987; Esposito et al. 2000; Wensink and Lekkerkerker 
2004; Savenko and Dijkstra 2004; Martins et al. 2005; Mueller and Weiss 2012). For such applications the 
chemical potential may be modified to account for the externally imposed force. Another chemical potential 
based equilibrium approach was used by Tajčmanová et al. (2014) in a geologically relevant application to 
obtain pressure gradients from chemically zoned minerals in a binary system. 

Alternatively a constrained minimization approach can be used in which the conventional equal pressure 
formulation of Gibbs energy remains unmodified. Typically, the constraints in the minimization are the amounts 
of chemical components of the system. Koukkari and Pajarre (2011) demonstrate that the minimization 
procedure can include system or external potential variables with their conjugate coefficients as well as non-
equilibrium affinities. 

The method presented here extends the conventional Gibbs minimization approach for geological materials to 
systems with externally imposed pressure variations. The method is generalized for multi-component multi-
phase systems formulated as a forward modelling technique. It provides a way of extending the chemical 
potential based unconventional barometry method from single binary to multi-component multi-phase systems. 

Gibbs energy calculation 
Gibbs energy of pure phases is calculated using the equations outlined in Appendix A (section a) with the most 
recent version of the end-member dataset of Holland and Powell (1998) (with updated version in 2004). As we 
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use a mass based approach (see Tajčmanová et al. 2014, Tajčmanová et al. 2015) phase compositions and 
energy are converted to weight fraction and J/kg respectively, by dividing over molecular mass of the phase. 
Solid solutions are generated as discrete phases systematically varying the composition following an approach 
similar to Connolly (2005). Section b of Appendix A lists the utilized procedure to calculate of Gibbs energy of 
these solution phases. Worked examples in Appendix B and the supplementary material demonstrate the site 
speciation calculation procedure for a selection of the programmed solution models.  

Constrained Gibbs energy minimization 
Constrained Gibbs energy minimization is performed using the LIPSOL linear optimization algorithm 
implemented in the function ‘linprog’ in Matlab (Zhang 1998b). The weight proportion of the i-th stable phase 
αi is found such as to minimize system Gibbs energy: 

1
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Multiple P-T pseudosections have been calculated to ensure reproducibility of phase diagrams generated with 
the widely used and extensively tested thermodynamic software package Perple_X (Connolly 2005). 

Gibbs minimization with pressure constraints 
In case of pressure heterogeneity Gibbs minimization is subject to an additional set of constraints by analogy to 
mass balance above: 
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where j
sysπ  is the weight fraction of the system having pressure Pj, j

iα  is the weight fraction of a i-th phase 
having pressure Pj . Equations 1, 2, and 3 have to be adjusted as follows: 
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where k is the index for system component. 

Input pressure constraints are assumed to satisfy: 
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Appendix C illustrates the generation of the equality constraint matrix using the above Eq. 4-7. Appendix D 
includes Matlab scripts implementing Eq. 1-3 for a standard calculation and a script for its generalization (Eq. 4-
7) to account for pressure variation. Examples of Matlab scripts for the visualization of the results can be found 
in the supplementary material. In all example calculations documented in the result section below, the weight 
fraction of the system being at a specified pressure is set at 1/m, where m is the number of pressure constraints. 
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For a calculation in which only two different input pressures are defined, the weight fraction of the system 
having pressure Pj is 0.5, whereas ten input pressure constraints ensure each pressure Pj to occupy 1/10th of the 
system. 

It is possible to think of dividing the system in compartments each of which can have a distinct pressure. The 
stable phase assemblage and composition are then found for which the Gibbs energy of the entire system is 
lowest while conserving total mass of the system.  

Fig. 1 illustrates a conceptual example in a G-X diagram for a binary solution phase in which two different 
pressures exist. The compositions of the phase are discretized (white circles in Fig. 1) for both pressures (P1 and 
P2). System composition is constrained at Xsys and fraction of the system at P1 is set to 0.5. Consequently, the 
global minimum of energy is reached with a phase assemblage that consists of two (discretized) phases each at a 
different pressure such that Xsys is satisfied (black circles in Fig. 1). The slope of the g-x curves being equivalent 
to the driving force for diffusion (∆µ , see review in Tajčmanová et al. in revision) is equal for both points 
(∆µP1−∆µ P2 = 0). Hence, the system is in thermodynamic equilibrium and the global minimization approach is 
equivalent to the chemical potential based approach. 

APPLICATIONS AND RESULTS 
The method is applied to two binary single phase geological examples (plagioclase and orthopyroxene). For 
these two examples the input pressure is obtained from the unconventional barometry method using chemical 
potentials. Therefore it also provides a benchmark of the two methods. Then these two examples are extended to 
a binary multiphase system. The effect of systematically varying the input pressure gradient on stable phase 
assemblage in a multiphase-multicomponent system is explored in a third geological example followed by two 
examples for a specific micro-texture in a complex multiphase system. Finally, equilibrium is calculated for a 
multi-phase, multi-component system using pressure obtained from a 2D mechanical model inspired by natural 
observations.  

Plagioclase rims 
Plagioclase formed as rims around kyanite during decompression in rocks from the Bohemian massif and is 
described in detail in earlier work (Tajčmanová et al. 2011). The anorthite component in plagioclase (Xan) 
decreases from the kyanite towards the matrix. This zoning can be interpreted as being in thermodynamic 
equilibrium with a mechanically feasible model in which pressure decreases from the kyanite towards the matrix 
(Tajčmanová et al. 2014). The presented minimization method is used to predict the compositional zoning from 
the derived pressure gradient. First, a P-T pseudosection is generated with the Gibbs energy calculated 
according to appendix A and the minimization as outlined above. Fig. 2 shows the phase diagram for a 
plagioclase consisting of 50% anorthite and 50% albite (see Table 1 for bulk compositions in all Figs.). The 
calculated phase assemblages, proportions, and compositions are benchmarked to calculations with Perple_X 
6.6.8 (see Suppl. Fig. 1) to rule out errors in the Gibbs energy of phases and the minimization algorithm. Then, 
for a temperature fixed at 800 °C the system composition is set to the average composition of the plagioclase 
rim and the pressure gradient derived from the zoning is added to a matrix pressure of 1.0 GPa to use as 
additional constraints. All possible phases for this composition are considered in the calculation to avoid 
prescribing the stability of feldspar as a result. Fig. 3 shows that the two different employed solution models 
predict the observed zoning within error of measurement. The fit is better for the solution model of Holland and 
Powell (2003) as the pressure gradient was derived using this model (Tajčmanová et al. 2014).With the matrix 
pressure set to 1.0 GPa as estimated by Tajcmanova et al. (2011) the stable phase assemblage consists of just 
plagioclase. When the matrix pressure is set at 2.0 GPa kyanite, jadeite, quartz and grossular are predicted on 
the high pressure side within the rim which is not observed. Hence, the Gibbs minimization method constrains 
also the absolute pressure in addition to benchmarking the two methods for the compositional zoning under 
pressure variations in plagioclase. 

Orthopyroxene zoning 
Primary orthopyroxene (Opx) from the diamond-grade ultra-high pressure (UHP) spinel-garnet peridotite body 
at Svartberget in the Western Gneiss Region (WGR), Norway was metamorphosed during the Caledonian 
Orogeny. It occurs in an assemblage with spinel, olivine, clinopyroxene, garnet and Fe-Ti oxides (mainly 
magnetite, ilmenite). The locality and rocks containing the Opx are described in detail by Vrijmoed et al. (2006; 
2013). The Opx shows typically bowl-shaped zoning of Al2O3, where Al2O3 content increases from core to rim. 
In equilibrium with garnet, the Al2O3 content in Opx is pressure dependent and used as geobarometer in opx-
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eclogites and garnet-peridotites (Macgregor 1974; Brey and Köhler 1990; Carswell and Harley 1990; Ravna-
Krogh and Paquin 2003; Nimis and Grutter 2010). Assuming the core of the Opx was in equilibrium with garnet 
at peak conditions the pressure can be estimated and the zoning interpreted as retrograde diffusion effect. Recent 
investigations show the Opx zoning is more complex and does not fit diffusional profiles but is possibly linked 
to metasomatic processes (Fig. 11d. in Vrijmoed et al. 2013). Diffusion of Al in Opx is usually assumed slow, 
mostly based on Al diffusion experiments in Cpx (Smith and Barron 1991; McFarlane et al. 2003). Wood 
(1974) experimentally calibrated Al diffusion in Opx in equilibrium with garnet resulting in orders of magnitude 
faster diffusion coefficients. Additionally, the UHP domains in the WGR remained at high temperature for 14-
20 Ma (Krogh et al. 2011). Thus the question whether diffusion was sufficiently fast to homogenize Al2O3 in 
Opx at the Svartberget locality is still open. If Al diffusion in Opx was indeed too slow, the zoning may be 
preserved as disequilibrium features produced during metasomatism. Alternatively, the possibility that the 
zoning is a result of equilibrium under pressure variations can be investigated. 

The two equilibrium methods (chemical potential and Gibbs minimization) are used to investigate how Al-
zoning in these Opx crystals is distributed at equilibrium under a pressure gradient. Using both approaches 
allows to benchmark the two methods on a different chemical system in a different mineral. The dominant 
pressure dependence of Al in Opx is captured by the reaction between enstatite, Mg-Tschermak’s molecule and 
pyrope (e.g. Wood 1974). For simplicity the Opx solution is treated as binary between the Mg end-member 
(enstatite) and the Al end-member (Mg-Tschermak’s). The Opx solution model of Holland and Powell (1996) is 
used. Fig.4 shows a P-T section for a system consisting of enstatite, diluted with 5 mole percent pyrope 
(benchmarked with Perple_X calculation in Suppl. Fig. 2). Isopleths of Al2O3 weight percent in Opx show the 
essential behavior of the Al-in-Opx geobarometer. Fig. 5 shows a possible pressure gradient (P needed to 
homogenize ∆µ for the zoning in Opx 8-4 (Fig. 4b. in Vrijmoed et al. 2006). As the chemical potential method 
delivers only the pressure gradient an absolute value of pressure at a point in the profile is chosen. With a value 
of 2.6 GPa at the rim on the left side the pressure decreases towards the core to around 0.15 GPa. The resultant 
pressure gradient is used as pressure constraints for the Gibbs minimization method in addition to the average 
composition of Opx as system composition. From all possible phases in the HP dataset only Opx is stable at the 
input pressures and system composition. A higher pressure at the rim will predict garnet in addition to Opx, 
which therefore constrains the absolute pressure along the profile. Figure 6 shows how the measured Al2O3 
content is reproduced with the pressure profile obtained using the chemical potential approach, thereby again 
confirming the reliability of both methods. Similar to the case of plagioclase the zoning is opposite to what is 
expected from a conventional P-T diagram (Fig. 4) where Al2O3 content decreases with increasing pressure. It is 
consistent with the Mg-Tschermak’s end-member having a higher density than the enstatite end-member.  

Multi-phase predictions 
The formulation shown above treats also multi-phase systems. The single phase example above already included 
all possible phases in the dataset in the minimization. Therefore only system composition needs modification. 
As an example the calculations were repeated for the two cases treated above. For the plagioclase rim, the 
system composition was modified to include part of the kyanite inclusion. The result is shown in Fig. 7 and 
demonstrates the ability of the method to also predict the observed kyanite on the high pressure side of the 
inclusion. Hence, this phase assemblage can be in equilibrium under the given input pressure gradient. For the 
Opx example a small amount of garnet (pyrope) was mixed with the average composition of the Opx to define 
the system composition input (see Table 1). The result in Fig. 8 shows that garnet is stable at highest pressures 
at the rims of the Opx, consistent with observations of garnet adjacent to Opx. It is noted here that the 
conventional Al-in-Opx barometry still applies at the contact between garnet and Opx. This means that higher 
pressure at the garnet-Opx interface will decrease Al2O3 concentration in Opx at the rim.  

Sensitivity of phase assemblage to pressure gradient 
To show the sensitivity of phase assemblage on pressure gradient a series of calculations was done for a 
relatively simple multi-phase, multi-component system consisting of olivine-plagioclase, an assemblage that is 
for example encountered in anorthosites of the Jotun nappe (e.g. Griffin 1971). Stable phase assemblage but also 
spatial distribution of the phases strongly depends on the pressure gradient (Fig. 9). The input composition 
consisted of 20 wt% olivine of composition given in Table 1 of Griffin (1971) and 80 wt% plagioclase (An42 
from Table 1 in Griffin, 1971). Pressure decays gradually from the left towards a constant pressure value on the 
right (Fig. 10). As a first observation it is noted that a corona-type structure in which there is clear separation of 
mineral zones as a result of varying pressure in space, while the entire system is in thermodynamic equilibrium 
(as opposed to corona structures being the result of disequilibrium). On the right plagioclase is stable separated 
from garnet (and minor amount of spinel) by a corona of olivine and clinopyroxene. Changing the pressure 
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distribution to a more gently decaying profile results in thickening of some of the rims and thinning of others; 
occasionally changing mineralogy (i.e. Opx appearance in second profile). The maximum pressure variation is 
only 0.4 GPa; implying that small changes in pressure gradient can have noticable effect on mineral modes. 

Complex multi-phase systems 
The example above was motivated by observations on corona structures described by Griffin (1971). Although 
distinct mineralogical zones are observed the simple Gaussian pressure distribution does not lead to the 
observed sequence of mineralogical zones in the corona structures. The most common coronas have a core of 
orthopyroxene surrounded by successive shells of clinopyroxene and garnet. Some of the more complex coronas 
have a core of olivine within the orthopyroxene (Griffin 1971). We show in Fig 10a that it is possible to match 
the observations more closely with a more complex pressure gradient and multi-mineral mixture. The system 
composition consisted of a mixture composed of 5 % olivine, 20% orthopyroxene, 10% clinopyroxene I, 10% 
clinopyroxene II, 10% garnet I, 2% spinel II, and the remaining 43% plagioclase using the observed mineral 
compositions from Table 1 in Griffin (1971). With a pressure gradient composed of pressure jumps and 
gradients it is possible to obtain the observed sequence of the more complex coronas. In addition, asymmetry in 
the profile leads to asymmetry in thickness of the mineralogical zones in the coronas which is often observed 
but hard to explain with purely diffusion controlled corona growth. Note that these calculations only show the 
potential of exploring the possibility that such corona structures may be explained with a pressure gradient at 
chemical equilibrium, rather than solving a fully inverse coupled thermo-mechanical-reactive model. 

For a more complex multi-component, multi-phase system the case of plagioclase rims around kyanite is 
extended to include the matrix in which the texture occurs. Computations were done in the system SiO2, TiO2 
Al2O3, MgO, FeO, CaO, Na2O, K2O H2O for the same bulk rock composition and solution models as in 
Tajčmanová et al. (2011). A benchmark for equal pressure and temperature with Perple_X is provided in the 
Suppl. Material. Over part of the 1D section the pressure gradient similar to the one derived by Tajčmanová et 
al. (2014) is used as input for the constrained Gibbs minimization (Fig. 10b). The remaining part of the cross 
section is set to the matrix pressure (1.0 GPa). On the high pressure side the predicted phases are garnet, kyanite, 
and rutile separated by a zoned plagioclase rim from a low pressure assemblage consisting of quartz, K-feldspar 
and melt. The zone of plagioclase that separates the low and high pressure phases is chemically zoned from high 
to low anorthite content going towards low pressure as obtained above for single plagioclase rim, consistent 
with results from Tajčmanová et al. (2014). In addition to kyanite being stable at the high pressure side as 
obtained for the multiphase example above, there is also garnet, which is due to the FeO and MgO content of the 
bulk rock composition. Thus garnet is expected to be stable at local high pressure domains in the rocks, just as 
kyanite. Observations of garnet in close relation to kyanite, surrounded by a plagioclase rim are found in 
Tajčmanová et al. (2011), as well as garnet crystals in the matrix, isolated from kyanite domains. Similar 
textures are observed in granulite from the Snowbird tectonic zone (Baldwin et al. 2007) in which garnet 
crystals have been found with rims of plagioclase. 

Two-dimensional multi-component multi-phase systems 
To conclude the applications of the herein described constrained Gibbs minimization method a two-dimensional 
pressure map is used as input to the program. One system composition is specified and the pressure computed in 
a 2D mechanical model. As an example, we have performed a calculation for a texture from the border of a 
shear zone in granulite from the Bergen Arcs, Norway (Mukai et al. 2014). The first order observation is a 
texture that consists of two garnet grains in a matrix of feldspar both capped by an aggregate of kyanite-quartz. 
We set up a calculation using the Finite Element Method (FEM) for a shear zone with two rigid inclusions (Fig. 
11). The analytical and numerical solution for a rigid circular inclusion in simple shear is well-known to have 
high pressure and low pressure lobes in the matrix around the inclusion (e.g. Schmid and Podladchikov 2003). If 
the shape of inclusion is not circular, and depending on the orientation of the inclusion the pressure can be high 
in the inclusions with respect to the matrix (Moulas et al. 2014). Additionally, the inclusion may have a positive 
volume increase relative to the matrix due to reaction which would increase the pressure in the inclusion 
(Vrijmoed et al. 2009). The result of a FEM calculation for such a system is shown in Fig. 11a&b, and the 
resulting stable phase assemblage is shown in Fig. 11c and enlarged in Fig. 11d. Comparison to the natural data 
in Fig. 11e&f shows that the first order observations are reproduced. 

Although the GASP reaction is essentially captured with pure phases and a binary feldspar solution, modelling 
garnet as a pure endmember is not adequate for natural systems. A related problem is that the absolute pressures 
in the map are significantly higher than what is expected from other pressure estimates in the area (e.g. 
Austrheim and Griffin, 1985; Andersen et al. 1991). To investigate this an additional series of calculation was 
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done in the system MnNCFMASH. Clinopyroxene, orthopyroxene, garnet, olivine, spinel, feldspar and 
amphibole were considered as solution (see caption Fig. 12 and Table 2). As system composition a mixture was 
made from 9.5 % garnet (composition of sample 11A2 from Austrheim and Griffin 1985) and 90.5 % feldspar 
with a composition consisting of 50% anorthite-rich and 50% anorthite-poor complex feldspar from Mukai et al. 
(2014). One weight percent H2O was added to the system composition as the sample shows also signs of fluid 
infiltration (Mukai et al. 2014). Due to computational limitations it was not possible to perform the calculations 
at the same resolution as Fig. 11. To capture the essentials of the pressure distribution obtained from the 
mechanical model the pressure map was divided in average pressure domains. The area of the domains was used 
to approximate the weight percent of system constrained at each pressure. This means that instead of using all 
elements from the FEM model only five different pressures were set as input constraints (see Fig 12d for the 
discretized pressure map). It is then possible to have garnet stable at the pressure and temperature estimated for 
the amphibolite facies conditions of the shear zone (Andersen et al, 1991). Also a kyanite zone in the high 
pressure caps around the rigid garnet grains is predicted, although fine quartz-kyanite mixture is not resolved. 
Instead there is a prediction of kyanite-zoisite with successive zones of zoisite-amphibole, plagioclase and 
plagioclase-quartz-water. 

Another possibility is that the rigid garnet inclusions are not in equilibrium but are instead fractionated from the 
matrix. For this case garnet (and its pressure) was subtracted from the system and an equilibrium prediction for 
only the matrix between the rigid inclusions is obtained (Fig. 13). The mechanical model is this case has only 
rigid non-reacting inclusions. Again the main characteristics are reproduced with a kyanite mixture (with zoisite 
and some garnet) at the high pressure caps around the rigid inclusion,  and successive zones at lower pressure 
away from the inclusion containing zoisite, zoisite-plagioclase, plagioclase and plagioclase-quartz-water where 
pressure variations have nearly vanished. Amphibole is not predicted in contrast to Fig. 12, which is most likely 
due to the fact that Mg-Fe in rigid garnet inclusions were fractionated from the system. These calculations show 
the difference in global equilibrium and partial disequilibrium (fractionated) under a pressure gradient. To 
determine which of the models fits the observations better, a detailed micro-structural and mineral-chemical 
study of target areas of thin sections in these rocks is needed. 

Another interesting observation is the occurrence of kyanite-quartz or kyanite-zoisite aggregates in cracks (e.g. 
upper right corner of BSE image in Fig. 11f). To investigate this we modified the aspect ratio of one weak 
inclusion in the mechanical model to obtain a strongly elliptical inclusion that captures the essential features of a 
crack (i.e. a weak zone with an infinite aspect ratio). Under certain orientations with respect to the shear 
deformation the pressure in the crack is higher than the matrix (e.g. Moulas et al, 2014). As system composition 
plagioclase with composition of An50 is used with 1 weight percent water. The prediction of the thermodynamic 
equilibrium shows the stability of kyanite-zoisite in the crack, whereas plagioclase, quartz and water are stable 
in the matrix. Thus, a crack with a certain orientation with respect to the shear deformation can fit the kyanite-
zoisite aggregates observed by Mukai et al. (2014) in some cracks in an equilibrium sense. 

DISCUSSION 
The presented Gibbs minimization approach provides a tool to predict the equilibrium phase assemblage and 
concentration in geological systems under a pressure gradient. It is a forward modelling tool that can be used to 
investigate the potential of explaining observations with pressure variations in space while in thermodynamic 
equilibrium. This is complementary to already existing techniques to find the pressure (and temperature) 
variations of rock in time. For example mineral zoning is commonly used to derive the P-T path; but also phase 
assemblages are useful by studying inclusions and interpreting phase assemblages and textures in terms of P-T 
evolution in time (Spear and Selverstone 1983; Gaidies et al. 2008; Caddick et al. 2010; Lanari et al. 2014; 
Vrijmoed and Hacker 2014). 

Confidence in the method is gained by generating conventional phase diagrams (i.e. phases at equal pressure) 
and comparing them to output from existing software (Perple_X, THERMOCALC). By obtaining similar Gibbs 
energies and identical phase diagrams errors resulting from input Gibbs energy of phases or the minimization 
algorithm are excluded. Tajčmanová et al. (2014) deduced the pressure gradient from measured concentration 
along a profile across a plagioclase rim surrounding kyanite. To this end they developed a geobarometer based 
on chemical potentials. From the thermodynamic point of view perhaps the most striking result is the opposite 
trend compared to what is expected from a phase diagram. In a conventional P-T section for the relevant rock 
composition the Ab-content increases with pressure. However, in Tajčmanová et al. (2014) An-content is 
highest at the contact with the high pressure kyanite inclusion and decreases towards the low pressure matrix. 
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The currently presented Gibbs energy method delivers the same result thereby increasing the confidence in the 
geobarometer of Tajčmanová et al. (2014). 

Both equilibrium methods (barometry and Gibbs minimization) are used to deduce pressure variations in Opx of 
the Svartberget UHP garnet-peridotite from the WGR, Norway (Vrijmoed et al. 2006; Vrijmoed et al. 2013). 
Again, both methods consistently predict opposite results compared to what is expected from a conventional 
phase diagram or garnet-orthopyroxene barometry. Bowl-shaped Al zoning (low concentration in the core) is 
predicted to result from highest pressure along rims and cracks of the Opx grains while the core composition 
corresponds to low pressure. On a larger scale this is observed in the pyroxenite and garnetite veins crosscutting 
the Svartberget body. The mineralogy and geothermobarometric results indicate higher pressures than the wall 
rock peridotite (Vrijmoed et al. 2006; Vrijmoed et al. 2008). Vrijmoed et al. (2009) proposed a conceptual 
model to account for these pressure variations on the outcrop scale; however the model would also fit the 
smaller scale pressure variations with highest pressure along rims and cracks inferred from the Al zoning in 
Opx. 

Separation of discrete mono- or bi-mineralic zones can be a result of disequilibrium processes such as 
infiltration or diffusion metasomatic zoning (Korzhinskii, 1970), as well as disequilibrium diffusion controlled 
rim growth leading to corona structures (Ashworth et al. 1992). However, it is shown here that pressure 
gradients also have the potential to result in such discrete mineralogical zoning and complete separation into 
single phase regions. Fig. 10 shows that when pressure is homogeneous multi-phase regions are predicted, 
similar to conventional phase diagram calculations assuming equal pressure in all phases. It must be noted that 
spatial information does not enter the Gibbs minimization method; therefore plotting of phases is independent 
from the prediction of stable phase assemblage and composition. When combined with models predicting spatial 
distribution of pressure and assuming equilibrium, the thermodynamic prediction can be plotted in space. The 
uniqueness of chemical equilibrium is guaranteed by the global minimization for the input pressure and system 
composition constraints, because the algorithm only converges when it found the global minimum under the 
constraints. The phase distribution for a given pressure distribution in space may be a function of initial 
conditions or perhaps processes such as nucleation. As nucleation may also depend on pressure perhaps where 
phases nucleate may be partially controlled by small variations in pressure.  

The work presented here raises new questions and is intended to promote new directions in research that may 
answer them. The presented equilibrium methods have some limits of applicability: 

1) Results become unreliable when temperature becomes significantly low and/or time scale become too 
short to reach equilibrium by diffusion. Predictions from experimental values for diffusion coefficients 
in combination with geochronology may be used to evaluate whether significant diffusion is expected 
to have occurred. 

2) Pressure variations need to be sustained on the time scale of the diffusion. Residual pressure has been 
measured in a number of cases and thus there seem to be situations that pressure variations outlast any 
reaction or diffusion process.  

Inferring spatial pressure variation from phase assemblage and chemical zoning as an inverse problem 
The method presented here is incomplete since the pressure ‘fractionation’ is an input rather than a model 
prediction. The method is formulated as a forward method. Therefore, there is formally no difference between 
assuming equal pressure as input as is commonly done in petrology, and input of multiple pressures. That 
pressure in metamorphic rocks can be heterogeneous is supported by theory and observations reviewed in the 
introduction. Pressure ‘fractionation’ is arbitrary specified using mass fractions. Once the stable phase 
assemblage and density are computed the mass constraints can be post-processed into volumetric constraints and 
arbitrarily and non-uniquely distributed in space. An inverse method that would predict pressure from measured 
concentration and phase distribution in a micro-structure would have to consider a fully coupled (thermo-) 
mechanical-reactive model by which pressure obtained from a mechanical model is consistent with material and 
rheological properties of the predicted phases in thermodynamic equilibrium. However, a correct computation 
method of thermodynamic equilibrium under a pressure gradient is a prerequisite to build such an inverse 
method. 

Geodynamic implications 
Current progress in research on pressure variations in metamorphic rocks indicates the maintenance of these 
pressures on the geological time scale. It becomes therefore challenging to decide which pressure corresponds to 
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the regional pressure (i.e. should we always take the highest pressure found in single inclusions). The presented 
method can be used to find the pressure distribution that fits geological observations, but also the absolute 
pressures are important in this fit, and hence this can provide insights into the regional pressure value that fits 
the observations. 

The case of plagioclase zoning around kyanite is problematic because phase diagram calculations indicate 
formation of plagioclase around kyanite during decompression, consistent with geodynamic reconstructions of 
the area, but zoning in these plagioclase rims points to the opposite P-T path. It can thus be either explained as 
disequilibrium features (i.e. with chemical potential gradients, Stipska et al. 2010) or with equilibrium under a 
pressure gradient (Tajčmanová et al. 2014) in which case it is consistent with experimentally determined 
diffusion coefficients in addition to fitting the geodynamic history of the region. 

CONCLUSION 
The following conclusions can be drawn: 

1) Chemical zoning and phase assemblages indicating variation in pressure may reflect spatial pressure 
variations at equilibrium rather than recording pressure evolution in time due to disequilibrium. The 
method presented here can be used complementary to existing inverse P-T path modelling techniques 
for cases where equilibrium is expected to be reached. 

2) Considering pressure variations in equilibrium thermodynamic calculations may lead to opposite 
zoning trends to what is expected from a conventional phase diagram. It is concluded that when 
pressure variation are known to exist (e.g. by direct measurements), conventional phase diagrams are 
inappropriate to use in assessing equilibrium. 

3) The chemical potential based barometry and Gibbs minimization approach deliver the same results and 
strengthen the confidence in the reliability of both the barometry and the minimization technique. 

4) Gibbs minimization extends the chemical potential based equilibrium under pressure variations in 
single phase binary (Tajčmanová et al. 2014) to multi-phase, multi-component systems. It may be used 
to develop barometric methods for multi-component, multi-phase systems. 

5) Equilibrium under pressure gradients may result in separation into single phase regions. 

ACKNOWLEDGEMENTS 
The work presented here profited from discussions with various people starting at Physics of Geological 
Processes (PGP) in 2005, and from discussions with L. Tajčmanová, E. Moulas at ETH Zurich. Financial 
support was provided by Faculty of Earth Sciences, University of Lausanne and by ERC starting grant 335577 
to Lucie Tajčmanová. 



11 
 

REFERENCES 
 

Andersen T, Austrheim H, Burke EAJ (1991) Fluid-induced retrogression of granulites in the Bergen Arcs, 
Caledonides of W. Norway: Fluid inclusion evidence from amphibolite-facies shear zones. Lithos 
27:29–42. doi: 10.1016/0024-4937(91)90018-G 

Ashworth JR, Birdi JJ, Emmett TF (1992) Diffusion in Coronas around Clinopyroxene - Modeling with Local 
Equilibrium and Steady-State, and a Non-Steady-State Modification to Account for Zoned Actinolite-
Hornblende. Contrib Mineral Petrol 109:307–325. 

Austrheim H, Griffin WL (1985) Shear deformation and eclogite formation within granulite-facies anorthosites 
of the Bergen Arcs, Western Norway. Chem Geol 50:267–281. 

Baldwin JA, Powell R, Williams ML, Goncalves P (2007) Formation of eclogite, and reaction during 
exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian Shield. J Metamorph Geol 
25:953–974. doi: 10.1111/j.1525-1314.2007.00737.x 

Barron L (2005) A linear model and topology for the host-inclusion mineral system involving diamond. Can 
Mineral 43:203–224. 

Bohlen SR, Wall VJ, Boettcher AL (1983) Experimental investigations and geological applications of equilibria 
in the system FeO-TiO (sub 2) -Al (sub 2) O (sub 3) -SiO (sub 2) -H (sub 2) O. Am Mineral 68:1049–
1058. 

Brey GP, Köhler T (1990) Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and 
Practical Assessment of Existing Thermobarometers. J Petrol 31:1353–1378. 

Burnley PC (2013) The importance of stress percolation patterns in rocks and other polycrystalline materials. 
Nat Commun. doi: 10.1038/ncomms3117 

Caddick MJ, Konopasek J, Thompson AB (2010) Preservation of Garnet Growth Zoning and the Duration of 
Prograde Metamorphism. J Petrol 51:2327–2347. doi: 10.1093/petrology/egq059 

Carswell DA, Harley SL (1990) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogite Facies 
Rocks. Blackie, Glasgow, pp 83–110 

Carswell DA, Tucker RD, O’Brien PJ, Krogh TE (2003) Coesite micro-inclusions and the U/Pb age of zircons 
from the Hareidland eclogite in the Western Gneiss Region of Norway. Lithos 67:181–190. 

Chopin C (1984) Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps - a 1St Record and 
Some Consequences. Contrib Mineral Petrol 86:107–118. 

Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet Sci 
Lett 212:1–14. 

Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite 
thermobarometers. J Metamorph Geol 20:683–696. doi: 10.1046/j.1525-1314.2002.00395.x 

Connolly JAD (2005) Computation of phase equilibria by linear programming: A tool for geodynamic modeling 
and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541. doi: 
10.1016/j.epsl.2005.04.033 

Dale J, Powell R, White RW, et al (2005) A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–
FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J Metamorph Geol 23:771–791. doi: 
10.1111/j.1525-1314.2005.00609.x 



12 
 

Diener JFA, Powell R, White RW, Holland TJB (2007) A new thermodynamic model for clino- and 
orthoamphiboles in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O. J Metamorph Geol 
25:631–656. 

Enami M, Nishiyama T, Mouri T (2007) Laser Raman microspectrometry of metamorphic quartz: A simple 
method for comparison of metamorphic pressures. Am Mineral 92:1303–1315. doi: 
10.2138/am.2007.2438 

Esposito RO, Castier M, W. Tavares F (2000) Calculations of thermodynamic equilibrium in systems subject to 
gravitational fields. Chem Eng Sci 55:3495–3504. doi: 10.1016/S0009-2509(00)00010-5 

Fuhrman ML, Lindsley DH (1988) Ternary-Feldspar Modeling and Thermometry. Am Mineral 73:201–215. 

Gaidies F, de Capitani C, Abart R (2008) THERIA_G: a software program to numerically model prograde 
garnet growth. Contrib Mineral Petrol 155:657–671. doi: 10.1007/s00410-007-0263-z 

Gibbs JW (1906) The Scientific Papers: Thermodynamics. Longmans, Green and co., London 

Gillet P, Ingrin J, Chopin C (1984) Coesite in Subducted Continental-Crust - P-T History Deduced from an 
Elastic Model. Earth Planet Sci Lett 70:426–436. 

Griffin WL (1971) Genesis of Coronas in Anorthosites of Upper Jotun Nappe, Indre-Sogn, Norway. J Petrol 
12:219–243. 

Guiraud M, Powell R (2006) P-V-T relationships and mineral equilibria in inclusions in minerals. Earth Planet 
Sci Lett 244:683–694. 

Holland TJB, Powell R (1990) An Enlarged and Updated Internally Consistent Thermodynamic Dataset with 
Uncertainties and Correlations - the System K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-
SiO2-C-H2-O2. J Metamorph Geol 8:89–124. 

Holland T, Powell R (1992) Plagioclase Feldspars - Activity-Composition Relations Based Upon Darken 
Quadratic Formalism and Landau Theory. Am Mineral 77:53–61. 

Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals .2. Symmetric formalism applied to 
solid solutions. Am Mineral 81:1425–1437. 

Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological 
interest. J Metamorph Geol 16:309–343. 

Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an 
asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501. 

Hwang SL, Shen P, Yui TF, Chu HT (2007) TiO2 nanoparticle trails in garnet: Implications of inclusion 
pressure-induced microcracks and spontaneous metamorphic-reaction healing during exhumation. J 
Metamorph Geol 25:451–460. doi: 10.1111/j.1525-1314.2007.00705.x 

Kenkmann T, Dresen G (1998) Stress gradients around porphyroclasts; palaeopiezometric estimates and 
numerical modelling. Struct Prop High Strain Zones Rocks 20:163–173. 

Kohn MJ (2014) “Thermoba-Raman-try”: Calibration of spectroscopic barometers and thermometers for 
mineral inclusions. Earth Planet Sci Lett 388:187–196. doi: 10.1016/j.epsl.2013.11.054 

Korzhinskii DS (1970) Theory of metasomatic zoning. Clarendon Press, Oxford 

Koukkari P, Pajarre R (2011) A Gibbs energy minimization method for constrained and partial equilibria. Pure 
Appl Chem 83:1243–1254. doi: 10.1351/Pac-Con-10-09-36 



13 
 

Krogh TE, Kamo SL, Robinson P, et al (2011) U-Pb zircon geochronology of eclogites from the Scandian 
Orogen, northern Western Gneiss region, Norway; 14-20 million years between ecologite 
crystallization and return to amphibolite-facies conditions. Can J Earth Sci Rev Can Sci Terre 48:441–
472. doi: 10.1139/E10-076 

Lanari P, Vidal O, De Andrade V, et al (2014) XMapTools: A MATLAB (c)-based program for electron 
microprobe X-ray image processing and geothermobarometry. Comput Geosci 62:227–240. doi: 
10.1016/j.cageo.2013.08.010 

Landau LD, Lifshitz EM (1987) Fluid Mechanics, 2nd edn. Butterworth Heinemann, Oxford, UK 

Llana-Funez S, Wheeler J, Faulkner DR (2012) Metamorphic reaction rate controlled by fluid pressure not 
confining pressure: implications of dehydration experiments with gypsum. Contrib Mineral Petrol 
164:69–79. doi: 10.1007/s00410-012-0726-8 

Macgregor ID (1974) The System MgO-Al2O3-SiO2 : Solubility of Al2O3 in Enstatite for Spinel and Garnet 
Peridotite Compositions. Am Mineral 59:110–119. 

Mancktelow NS (2008) Tectonic pressure: Theoretical concepts and modelled examples. Lithos 103:149–177. 
doi: 10.1016/j.lithos.2007.09.013 

Martins LSF, Tavares FW, Pecanha RP, Castier M (2005) Centrifugation equilibrium for spheres and 
spherocylinders. J Colloid Interface Sci 281:360–367. doi: 10.1016/j.jcis.2004.08.106 

McFarlane CRM, Carlson WD, Connelly JN (2003) Prograde, peak, and retrograde P–T paths from aluminium 
in orthopyroxene: High-temperature contact metamorphism in the aureole of the Makhavinekh Lake 
Pluton, Nain Plutonic Suite, Labrador. J Metamorph Geol 21:405–423. doi: 10.1046/j.1525-
1314.2003.00446.x 

Milke R, Abart R, Kunze K, et al (2009) Matrix rheology effects on reaction rim growth I: Evidence from 
orthopyroxene rim growth experiments. J Metamorph Geol 27:71–82. doi: 10.1111/j.1525-
1314.2008.00804.x 

Miller DG (1956) Thermodynamic theory of irreversible processes. II. Sedimentation equilibrium of fluids in 
gravitational and centrifugal fields. Am J Phys 24:555–561. doi: 10.1119/1.1934319 

Misra S, Mandal N (2007) Localization of plastic zones in rocks around rigid inclusions; insights from 
experimental and theoretical models. J Geophys Res. doi: 10.1029/2006JB004328 

Mosenfelder JL, Bohlen SR (1997) Kinetics of the coesite to quartz transformation. Earth Planet Sci Lett 
153:133–147. 

Moulas E, Burg J-P, Podladchikov Y (2014) Stress field associated with elliptical inclusions in a deforming 
matrix: Mathematical model and implications for tectonic overpressure in the lithosphere. Obs Model 
Perspect Mech Prop Lithosphere 631:37–49. doi: 10.1016/j.tecto.2014.05.004 

Moulas E, Podladchikov YY, Aranovich LY, Kostopoulos D (2013) The problem of depth in geology: When 
pressure does not translate into depth. Petrology 21:527–538. doi: 10.1134/S0869591113060052 

Mueller I, Weiss W (2012) Thermodynamics of irreversible processes - past and present. Eur Phys J H 37:139–
236. doi: 10.1140/epjh/e2012-20029-1 

Mukai H, Austrheim HO, Putnis CV, Putnis A (2014) Textural evolution of plagioclase feldspar across a shear 
zone; implications for deformation mechanism and rock strength. J Petrol 55:1457–1477. doi: 
10.1093/petrology/egu030 



14 
 

Nimis P, Grutter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib 
Mineral Petrol 159:411–427. doi: 10.1007/s00410-009-0455-9 

O’Brien PJ, Ziemann MA (2008) Preservation of coesite in exhumed eclogite: insights from Raman mapping. 
Eur J Mineral 20:827–834. 

Parkinson CD (2000) Coesite inclusions and prograde compositional zonation of garnet in whiteschist of the 
HP-UHPM Kokchetav massif, Kazakhstan: a record of progressive UHP metamorphism. Lithos 
52:215–233. 

Parkinson CD, Katayama I (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and 
garnet; evidence from laser Raman microspectroscopy. Geol Boulder 27:979–982. doi: 10.1130/0091-
7613(1999)027<0979:PDUPCO>2.3.CO;2 

Perrillat JP, Daniel I, Lardeaux JM, Cardon H (2003) Kinetics of the Coesite-Quartz Transition: Application to 
the Exhumation of Ultrahigh-Pressure Rocks. J Petrol 44:773–788. 

Powell R (1987) Darken Quadratic Formalism and the Thermodynamics of Minerals. Am Mineral 72:1–11. 

Powell R, Holland T (1993) On the Formulation of Simple Mixing Models for Complex Phases. Am Mineral 
78:1174–1180. 

Pryer LL, Robin P-YF (1996) Differential stress control on the growth and orientation of flame perthite: a 
palaeostress-direction indicator. J Struct Geol 18:1151–1166. doi: 10.1016/0191-8141(96)00037-5 

Ravna-Krogh EJ, Paquin J (2003) Thermobarometric methodologies applicable to eclogites and garnet 
ultrabasites. In: Carswell DA, Compagnoni R (eds) Ultrah. Press. Metamorph. Eötvös University Press, 
Budapest, pp 229–259 

Robin P-YF (1974) Stress and Strain in Cryptoperthite Lamellae and the Coherent Solvus of Alkali Feldspars. 
Am Mineral 59:1299–1318. 

Savenko SV, Dijkstra M (2004) Sedimentation and multiphase equilibria in suspensions of colloidal hard rods. 
Phys Rev E 70:051401. doi: 10.1103/PhysRevE.70.051401 

Schmid DW (2005) Rigid polygons in shear. High-Strain Zones Struct Phys Prop 245:421–431. 

Schmid DW, Podladchikov YY (2003) Analytical solutions for deformable elliptical inclusions in general shear. 
Geophys J Int 155:269–288. 

Schmid DW, Abart R, Podladchikov YY, Milke R (2009) Matrix rheology effects on reaction rim growth II: 
coupled diffusion and creep model. J Metamorph Geol 27:83–91. 

Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz; a pressure sensor for hydrothermal 
diamond-anvil cell experiments at elevated temperatures. Am Mineral 85:1725–1734. 

Schrank CE, Fusseis F, Karrech A, Regenauer-Lieb K (2012) Thermal-elastic stresses and the criticality of the 
continental crust. Geochem Geophys Geosystems. doi: 10.1029/2012GC004085 

Simpson C, Wintsch RP (1989) Evidence for deformation-induced K-feldspar replacement by myrmekite. J 
Metamorph Geol 7:261–275. 

Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 
310:641–644. 

Smith D, Barron BR (1991) Pyroxene-garnet equilibration during cooling in the mantle. Am Mineral 76:1950–
1963. 



15 
 

Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of 
America Washington DC United States. Pages: 799. 

Spear FS, Selverstone J (1983) Quantitative P-T Paths from Zoned Minerals - Theory and Tectonic 
Applications. Contrib Mineral Petrol 83:348–357. 

Stipska P, Powell R, White RW, Baldwin JA (2010) Using calculated chemical potential relationships to 
account for coronas around kyanite: an example from the Bohemian Massif. J Metamorph Geol 28:97–
116. doi: 10.1111/j.1525-1314.2009.00857.x 

Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in 
biotite. J Metamorph Geol 27:153–165. doi: 10.1111/j.1525-1314.2008.00812.x 

Tajčmanová L, Abart R, Neusser G, Rhede D (2011) Growth of plagioclase rims around metastable kyanite 
during decompression of high-pressure felsic granulites (Bohemian Massif). J Metamorph Geol 
29:1003–1018. doi: 10.1111/j.1525-1314.2011.00953.x 

Tajčmanová L, Podladchikov Y, Powell R, et al (2014) Grain-scale pressure variations and chemical 
equilibrium in high-grade metamorphic rocks. J Metamorph Geol 32:195–207. doi: 10.1111/jmg.12066 

Tajčmanová L, Vrijmoed J, Moulas E (2015) Grain-scale pressure variations in metamorphic rocks: implications 
for the interpretation of petrographic observations. Lithos 216–217:338–351. doi: 
10.1016/j.lithos.2015.01.006 

Tenczer V, Stuewe K, Barr TD (2001) Pressure anomalies around cylindrical objects in simple shear. J Struct 
Geol 23:777–788. 

Van der Molen I, van Roermund HLM (1986) The Pressure Path of Solid Inclusions in Minerals - the Retention 
of Coesite Inclusions during Uplift. Lithos 19:317–324. 

Vrijmoed JC, Hacker BR (2014) Determining P–T paths from garnet zoning using a brute-force computational 
method. Contrib Mineral Petrol 167:1–13. doi: 10.1007/s00410-014-0997-3 

Vrijmoed JC, Van Roermund HLM, Davies GR (2006) Evidence for diamond-grade ultra-high pressure 
metamorphism and fluid interaction in the Svartberget Fe-Ti garnet peridotite-websterite body, 
Western Gneiss Region, Norway. Mineral Petrol 88:381–405. 

Vrijmoed JC, Smith DC, van Roermund HLM (2008) Raman confirmation of microdiamond in the Svartberget 
Fe-Ti type garnet peridotite, Western Gneiss Region, Western Norway. Terra Nova 20:295–301. 

Vrijmoed JC, Podladchikov YY, Andersen TB, Hartz EH (2009) An alternative model for ultra-high pressure in 
the Svartberget Fe-Ti garnet-peridotite, Western Gneiss Region, Norway. Eur J Mineral 21:1119–1133. 
doi: 10.1127/0935-1221/2009/0021-1985 

Vrijmoed JC, Austrheim H, John T, et al (2013) Metasomatism of the ultra-high pressure Svartberget Fe-Ti type 
garnet-peridotite, Western Gneiss Region, Norway. J Petrol 54:1815–1848. doi: 
10.1093/petrology/egt032 

Wensink HH, Lekkerkerker HNW (2004) Sedimentation and multi-phase equilibria in mixtures of platelets and 
ideal polymer. Europhys Lett 66:125–131. doi: 10.1209/epl/i2003-10140-1 

White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for 
metapelites. J Metamorph Geol 25:511–527. 

Will TM, Powell R (1992) Activity-Composition Relationships in Multicomponent Amphiboles - an 
Application of Darken Quadratic Formalism. Am Mineral 77:954–966. 



16 
 

Wood BJ (1974) Solubility of Alumina in Orthopyroxene Coexisting with Garnet. Contrib Mineral Petrol 46:1–
15. 

Ye K, Liou JB, Cong B, Maruyama S (2001) Overpressures induced by coesite-quartz transition in zircon. Am 
Mineral 86:1151–1155. 

Young TF, Kraus KA, Johnson JS (1954) Thermodynamics of equilibrium in the ultracentrifuge. J Chem Phys 
22:878–880. 

Zhang Y (1998a) Mechanical and phase equilibria in inclusion-host systems. Earth Planet Sci Lett 157:209–222. 

Zhang Y (1998b) Solving large-scale linear programs by interior-point methods under the matlab environment. 
Optim Methods Softw 10:1–31. doi: 10.1080/10556789808805699 

 



17 
 

FIGURE CAPTIONS 
Fig. 1 Diagram showing the concept of constrained Gibbs minimization for a closed binary system under a 
pressure gradient. Two curves (thick solid lines) display the partial Gibbs energy (g) of the solid solution, each 
at different pressure (P1 and P2). Open circles on the curve symbolize the discretized phases of the solutions that 
are input into the minimizer. For a system composition fixed at Xsys (dashed straight line) the minimum Gibbs 
energy of the system is given by a mixture of two of the discretized phases each lying on a different Gibbs 
energy curve to fulfill the pressure constraint. With the weight fraction of the system at each pressure 
constrained at 1/nP, 1/2 will be at the P1 curve and the other half at P2. Horizontal arrows indicate the deviation 
of the stable phase composition from Xsys. Two straight lines (thin solid lines) show the difference in chemical 
potentials of the two end-members for each pressure (∆µP1 and ∆µP2). From theoretical predictions these two 
lines are parallel in equilibrium (as in that case gradients in chemical potential difference have vanished and 
there are no macroscopic fluxes in the system). As can be seen from the diagram this is equivalent to the result 
of the Gibbs energy minimization. 

Fig. 2 P-T diagram in NCAS for a plagioclase (50% An) bulk composition. Isopleths of mole fraction An in 
plagioclase is indicated with rectangular labels. The P-T range over which the GASP reaction takes place is 
enclosed by thick solid lines. Variance is indicated with gray shading conform pseudosection diagrams in 
Perple_X. The resultant diagram here produced with our MATLAB formulation of Perple_X (see Appendix A) 
is identical to the one created with Perple_X 6_6_8 (see Suppl. Fig. 1). The diagram shows that anorthite 
content decreases with pressure, which remains true for the more complex composition of the sample from the 
Bohemian Massif (e.g. Tajčmanová et al 2011). 

Fig. 3 Results of constrained Gibbs minimization for average composition (0.26 Xan) of plagioclase rim under 
the pressure gradient. The blue and green curves are the predicted phase compositions using respectively the 
Holland and Powell (2003) ternary feldspar model (‘Fsp(C1)’ in Perple_X) and the Fuhrman and Lindsley 
(1988) model (‘feldspar’ in Perple_X). Red circles indicate the measured compositions. The bottom figure 
shows the input pressure gradient as derived by Tajčmanová et al. (2014). 

Fig. 4 P-T diagram in MAS for enstatite with 0.1% MgTs. Isopleths of Al2O3 (wt %) are labeled with 
rectangular boxes. Al2O3 content of Opx in equilibrium with garnet (pyrope) decreases with pressure which 
forms the basis of the Opx-garnet geobarometry. Variance is indicated with gray shading conform pseudosection 
diagrams in Perple_X. Identical results are obtained with Perple_X (see Suppl. Fig. 2). 

Fig. 5 Results of unconventional barometry for Opx in Svartberget peridotite at 800°C. a). Contour diagram of 
∆µ (µen-µmgts) for variable pressure and measured composition along the profile (distance between analyses 
~35µm). The equilibrium state follows contours (i.e. where ∆µ is constant). White line shows the pressure 
profile for a rim pressure set to ~2.6 GPa. b) Measured Al2O3 wt % across the Opx grain. c) Pressure profile 
corresponding to the chosen isopleth of ∆µ from figure a. d) Calculated density (kg/m3) across the Opx grain 
corresponding to the pressure profile of fig. a&b. Density increases with pressure as the concentration of the 
densest end-member (MgTs) increases. 

Fig. 6 Results of constrained Gibbs minimization for average composition of Opx grain 8-4a (from Vrijmoed et 
al 2006) under the pressure gradient obtained from Fig. 5. a) The blue solid line shows predicted Al2O3 wt% 
content in Opx using the Gibbs minimization approach. System composition was constrained at average Al2O3 
wt% in the grain. Red circles are compositions measured with microprobe and are predicted by the model within 
error of measurement. b) Pressure profile used as constraints in the Gibbs minimization. Solution model based 
on Holland and Powell (1996) (equivalent to Opx(HP) in Perple_X). 

Fig. 7 Results of constrained Gibbs minimization for compositional mixture of plagioclase rim in Fig. 3 and 
adjacent kyanite. The same pressure gradient as in Fig. 3 was input as constraints. a) Modal percentage of stable 
phases as cumulative plot. The model predicts nearly 100% kyanite stable at the high pressure side (adjacent to 
the highest XAn of the plagioclase rim), as observed in the rock. b) Predicted Xan in the plagioclase rim similar to 
the prediction in Fig. 3. c) Input pressure gradient (note: this is absolute P not ∆P). 

Fig. 8 Results of constrained Gibbs minimization for mixture of Opx grain in Fig. 6 and surrounding garnet. The 
same pressure gradient as Fig. 6 was input as constraints. a) Modal percentage of stable phases. Garnet is 
predicted at both high pressure sides of the Opx. b) Predicted Al2O3 weight percent in the Opx grain similar to 
the prediction in Fig.6. c) Input pressure. 
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Fig. 9 Cumulative phase mode diagrams along a 1D section showing the effect of varying pressure gradients on 
phase assemblage in multi-component, multi-phase system (NCFMAS) consisting of 20% olivine and 80% 

plagioclase. Pressure (GPa) input gradient (black dotted line; scale on right axis) is computed as 2
8 4 xe λ−+ ⋅  

where λ is varied as indicated on each profile. Solution models used in the calculation with the corresponding 
name of the solution model in Perple_X (see solution_model.dat available for download from 
http://www.perplex.ethz.ch/); clinopyroxene: Omph(HP); ternary feldspar: feldspar; garnet: Gt(HP); spinel: 
Sp(HP); olivine: O(HP); orthopyroxene: Opx(HP). See Table 2. 

Fig. 10 a) Results of constrained Gibbs minimization for bulk rock composition consisting of a mixture of 
minerals from Griffin (1971). The stable phase assemblage is shown in a cumulative plot of the phase modes 
(wt%). White dotted line shows input pressure gradient (axis on the right). Note that varying thickness of Opx 
zones around olivine can be due to asymmetry in the pressure profile, while purely diffusion controlled growth 
should result in equal thickness of zones. 

b) Results of constrained Gibbs minimization for bulk rock composition in NCKFMASHT (from Fig. 5 in 
Tajčmanová et al 2011). Upper panel shows a cumulative plot of the phase modes (wt%). White dotted line 
shows input pressure gradient (axis on the right). Lower panel shows composition of feldspar in terms of 
anorthite (left axis; blue curve) and orthoclase component (right axis; green curve). Garnet, kyanite and rutile 
are predicted on the high pressure side, separated by a rim of zoned plagioclase from quartz, K-feldspar (± 
melt). Solution models used in the calculation with the corresponding name of the solution model in Perple_X 
(see Table 2) are biotite: Bio(TCC); clinopyroxene: Omph(HP); ternary feldspar: feldspar; garnet: Gt(HP); white 
mica: Mica(CHA); orthopyroxene: Opx(HP); melt: melt(HP). Abbreviations: liq = melt; Fsp = feldspar; Gt = 
garnet; Ol = olivine; Opx = orthopyroxene; Cpx = clinopyroxene; ky = kyanite; q  = quartz ; ru = rutile. 

Fig. 11 Results of Gibbs minimization under constrained pressure in a 2D domain. a) Dimensionless pressure 
variations (local mean stress) calculated with a FEM model for two high pressure inclusions in a shear zone 
(shear sense indicated with black arrows) (model boundaries are further outside the figure). Rectangle shows 
zoom in figure b. b) Pressure map used as constraints in the minimization. The pressure was obtained by 
normalizing to the maximum pressure in the domain indicated in fig. a, multiplied by a factor used as fitting 
parameter and added to a background pressure. c) Stable phase assemblage obtained from the minimization with 
enlargement in fig. d, fitting the main observations shown with petrographic image fig. e and BSE image in fig. 
f. Note that aside from pressure distribution and variation, absolute pressure was also important in fitting the 
phase assemblage. This gives constraints on the regional pressure. 

Fig. 12 Results of Gibbs minimization under constrained pressure in a 2D domain in the system MnNCMASH. 
a) Same as in Fig. 11a at higher resolution and full model size. Rectangle shows zoom in figure b. b) Zoom in to 
a. Absolute pressure obtained with the same procedure as Fig. 11 b. A lower background pressure was used to 
be consistent with the amphibolite facies P-T conditions estimated in the area (Andersen et al. 1991). White 
rectangle shows area used in the Gibbs minimization. c) Stable phase assemblage estimated for the domain 
outlined in the white rectangle of figure b. The fraction of the system at each pressure is approximated using the 
pressure and corresponding area in figure d. d) Input pressure map obtained from figure b using average 
pressures over the contoured domains. Thus, five different input pressure constraints were used in this 
calculation. This averaging procedure allowed calculating equilibrium under pressure constraints in a 
significantly more complex chemical system. 

Fig. 13 Results of Gibbs minimization under constrained pressure in a 2D domain in the system NCMASH with 
garnet composition in the rigid inclusions subtracted from the system. This represents a situation in which the 
rigid garnet inclusions are not in equilibrium with the matrix. The main difference is the absence of amphibole 
in this calculation compared to including garnet in the equilibrium in Fig. 12. a) Dimensionless pressure from 
the FEM model with rigid non-reactive circular inclusions. b) Zoom in of a. c) Stable phase assemblage for 
averaged pressure distribution in d. d) Averaged pressure distribution in the domain outlined in figure b. See 
also caption of Fig. 12. 

Fig. 14 Results of Gibbs minimization under constrained pressure in a weak strongly elliptical inclusion 
approximating a fracture for a system composition consisting of feldspar (An50) and one weight percent water. 
High pressure phases are predicted in the fracture reflecting the pressure increase due to decrease in differential 
stress with respect to the matrix. See Moulas et al. (2014) for full analysis of pressure in elliptical inclusions. 
See caption Fig. 12. 
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A. GIBBS ENERGY CALCULATION 

Pure phases 
Partial molar Gibbs energy (g0) for mineral and liquid end-members is generalized as a linear combination of the 
independent (idp) set of end-members in the internally consistent thermodynamic data set of Holland and Powell 
(1998), hereafter referred to as HP98 data set. Enthalpy of formation of ordered end-members (1996) and 
energies for fictive end-members following from application of Darken’s Quadratic Formalism (Powell 1987; 
Holland and Powell 1992; Will and Powell 1992) are generalized by a single DQF parameter: 

 (A.1) 

For the independent end-members in the HP98 data set the stoichiometric coefficient and the DQF parameter are 
1 and 0, respectively. Partial molar Gibbs energy of these end-members is calculated following standard 
formulation (Spear 1993), with the addition of two excess Gibbs energy terms for phases treated with a Landau 
model (Holland and Powell 1998): 

 (A.2) 

Heat capacity is given by the polynomial in the caption of Table 5 in Holland and Powell (1998): 

 (A.3) 

Volume at reference pressure (1 bar) and elevated temperatures is given by Holland and Powell (1998): 

 (A.4) 

Volume at elevated pressure is modelled with the Murnaghan equation of state rearranged for volume: 

 
(A.5) 

The bulk modulus is given by Holland and Powell (1998): 

 (A.6) 

Landau model excess energy 
Phases undergoing order-disorder or lambda heat capacity anomalies are treated with a Landau model (Holland 
and Powell 1990; Holland and Powell 1998). The excess Gibbs energy term related to this model is calculated 
from: 

 (A.7) 

With the enthalpy and entropy at reference conditions given in equation (A.8) and (A.9): 
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The volume integral is evaluated again with the Murnaghan equation of state using the volume at reference 
pressure and elevated temperature from: 

 (A.10) 

The Landau excess energy is then obtained with: 

 (A.11) 

This term is added only at temperatures below the critical temperature Tc: 

 (A.12) 

The order parameter Q (and Qref evaluated at reference conditions) is calculated as: 

 (A.13) 

Parameters needed in equation (A.2)-(A.13) are: ∆fHref, Sref, a, b, c, d, Vref, a0, kref, Tc0, Smax, and Vmax. Most 
updated values of these parameters are found in the tc-ds55 file bundled with the most recent version of 
THERMOCALC (http://www.metamorph.geo.uni-mainz.de/thermocalc). Reference conditions are 298.15 °K at 
1 bar. See Table 3 for a complete list of symbols and parameters used in “Appendix 1”. 

Ordered and fictive end-members 
Stoichiometric coefficients (vidp) and name of independent end-members in equation A.1 are found in activity-
composition (a-x) files bundled with THERMOCALC or individually downloadable from 
http://www.metamorph.geo.uni-mainz.de/thermocalc. The DQF parameter capturing both the DQF energy of 
fictive end-members and the enthalpy of reactions forming ordered end-members is given as: 

 (A.14) 
Parameters aDQF, bDQF, and cDQF are found in the lines below the stoichiometric coefficients in the same ax-files. 

Solid solutions 
The partial molar Gibbs energy of mixing in solid solutions and melts consist of a mechanical (mech), and ideal 
(id) and a non-ideal (nid) part: 

 (A.15) 
Mechanical mixing Gibbs energy consists of a linear combination of the total number (np) of end-member 
Gibbs energies in the solution, obtained from equation (A.1) above, multiplied by its proportion p.  

 (A.16) 

Ideal mixing Gibbs energy, or configurational energy, is obtained from the sum of crystallographic site fractions 
following Stirling’s approximation (see also the appendix in Tajčmanová et al 2009). 

 (A.17) 

Definition of certain solution models results in non-zero site fractions for some end-members leading to non-
zero configurational entropy for the pure end-member. This is corrected for by the last sum in equation (A.17), 
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because in principle pure phases do not contribute to ideal mixing energy. The configurational entropy for the 
pure end-members in the solution is calculated from site fractions of pure end-member (z0): 

 (A.18) 

For example the anorthite end-member in ternary feldspar is defined as having the tetrahedral site filled half 
with Al and the other half with Si, so that both site fractions (Si and Al on the tetrahedral site) are half. An 
equivalent approach for chemical potentials is described in Powell and Holland (1993). 

Non-ideal mixing Gibbs energy is generalized to account for ternary interaction parameters and asymmetric Van 
Laar formulation (Holland and Powell 2003):  

 (A.19) 

The Margules parameters W*iw are multiplied by the product of proportions phi corresponding to the iw-th 
interaction parameter. The indices of φ for each iwth interaction parameter are stored in a matrix ‘wi’. This 
matrix has nw number of Margules parameters and ni number of end-member indices. The number of multiplied 
proportions (ni) is depending on the solution model. Usually the Margules parameters are binary interaction but 
for feldspar they are ternary interaction parameters. This corrected Margules parameter W*iw is obtained from 
Margules parameters Wiw fitted in experiments (e.g. found in literature) multiplied by proportions of interacting 
end-members and corrected by a size parameter (α):  

 

(A.20) 

The asymmetric proportion φ of the ith end-member is found from:  

 
(A.21) 

Both the Margules and α parameters are in principle pressure and temperature dependent and parameterized as: 

 (A.22) 

 (A.23) 
Values for α0, αΤ, αP  and W0, WT, WP are found in literature describing solution models, from ax-files bundled 
with THERMOCALC or from the solution_model.dat file packaged with Perple_X. 

Site speciation 
Finding the site fractions as function of mineral compositions is done by setting up a linear system of equations. 
The first set of equations is found by the definition that site fractions on each site sum up to 1. This gives ns 
(number of sites) equations. For each is-th site the equation is: 

 (A.24) 

The second set of equations is given by the definition of compositional variables: 
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In case of order-disorder in a mineral, for each ordered end-member an extra equation is required that defines 
the order parameter. 

 (A.26) 

Then any extra assumptions form additional equations (for example equal distribution of an element over 
different sites): 

 (A.27) 

If the system of equations is not closed a charge balance equation can be added to ensure electro-neutrality: 

 (A.28) 

After the site fractions have been found as function of compositional variables, the proportions of end-members 
as function of site fractions can be solved from the obtained matrix of site fractions and proportions of end-
members. 

The first equation is always the constraint that proportions sum up to 1: 

 (A.29) 

For the remaining equations the independent set of equations of site fraction as function of proportion are 
chosen: 

 (A.30) 
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B. SITE SPECIATION AND PROPORTION CALCULATION EXAMPLE 

 
 

Clino-Amphibole: 

For clino-amphibole from Diener et al. (2007) (closely resembling ortho-Amphibole from the same authors), 
identical to cAmph(DP) or cAmph(DP2) in Perple_X the crystallography can be tabulated as: 

 Site 1 Site 2 Site 3 Site 4 Site 5 
Crystallography A M13 M2 M4 T1 
Multiplicity 1 3 2 2 4 (1) 
Site fraction z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 
Charge 0 1 2 2 2 2 3 3 2 2 2 1 4 3 
Element V Na Mg Fe Mg Fe Al Fe3 Ca Mg Fe Na Si Al 

 

The brackets indicate a multiplicity which is employed by Diener et al. (2007) to calculate ideal mixing energy 
rather than using the actual site multiplicity (see also comments in solution_model.dat file from the current 
version of Perple_X software package). For charge balance in equations below, the correct multiplicity (4) is 
used. 

From this the set of equations to find site fraction can be written: 
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  (B.1) 

The last two equations to close the system are unknown site fractions that need to be varied independently. They 
function like an order-disorder parameter such as Q’s used in THERMOCALC formulations (Eq. A.26). 

Solving this for site fraction z gives: 
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(B.2) 

 

Substituting the compositional variables (Al, Fe, Mg, Ca, Na and Fe3+) for each end-member (found in the tc-
ds55 database file) and the site fractions for the ordered end-members (a and b) gives the site fractions in the 
table below: 

  z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 
tr p1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 
ts p2 1 0 1 0 0 0 1 0 1 0 0 0 ½ ½ 
parg p3 0 1 1 0 ½ 0 ½ 0 1 0 0 0 ½ ½ 
gl p4 1 0 1 0 0 0 1 0 0 0 0 1 1 0 
cumm p5 1 0 1 0 1 0 0 0 0 1 0 0 1 0 
grun p6 1 0 0 1 0 1 0 0 0 0 1 0 1 0 
a p7 1 0 1 0 0 1 0 0 0 0 1 0 1 0 
b p8 1 0 0 1 1 0 0 0 0 0 1 0 1 0 
mrb p9 1 0 1 0 0 0 0 1 0 0 0 1 1 0 

 

Choosing the independent equations from the columns in the table above along with the requirement that the 
end-members sum up to one gives: 
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Solving for p gives: 
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C. PRESSURE CONSTRAINTS EXAMPLE 
As an example here the equations for the pressure constraints in a system with 3 different pressures, 3 phases 
and 3 compositions is spelled out. 

The pressure constraints: 

1 1 1 1
1 2 3
2 2 2 2
1 2 3
3 3 3 3
1 2 3

sys

sys

sys

α α α π
α α α π
α α α π

+ + =
+ + =
+ + =

  (C.1) 

The gibbs energy function to be minimized: 

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3
1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3sys P P P P P P P P P

g g g g g g g g g gα α α α α α α α α= + + + + + + + +   (C.2
) 

The system composition constraints look similar to Eq. C.2, for example in case of having a component xCaO: 

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 31 2 3 1 2 3 1 2 3

CaO CaO CaO CaO CaO CaO CaO CaO CaO CaO
sys x x x x x x x x xx α α α α α α α α α= + + + + + + + +   (C.3) 

For Matlab the constraint equations are written in matrix form resulting in: 
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                     =                      
 
 

  (C.4) 

The optimization algorithm (function linprog in Matlab) then searches for the alpha’s between 0 and 1 that gives 
the minimum of eq. C.2 satisfying the equality matrix in eq. C.4. See appendix D for code examples. 
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D. CODE EXAMPLES 
Code for standard P-T diagram calculation: 

clear,clf    1 
% Input 2 
T      = (700:5:800) + 273.15;             % Kelvin 3 
P      = 15:0.5:25;                        % Kbar 4 
comp   = {'SiO2', 'Al2O3','CaO','Na2O'  }; % components 5 
Xsys   = [55.9671 28.0456  10.0783 5.909]; % X system 6 
phs_id = {'feldspar'};                     % solution models 7 
dz     = 0.02;                             % discretization 8 
step  9 
load_dataset; % Load thermodynamic dataset and m-functions 10 
% Calculate P-T diagram 11 
for iT = 1:length(T)     % T loop 12 
    for iP = 1:length(P) % P loop 13 
        % Generate Gibbs energies 14 
        [g_kg,Xwt,psc_id] = gcalc_fun(T(iT),P(iP),phs_id);  15 
        %%%%%% Gibbs minimization %%%%%%%%%%%%%%%%%%%%%%%%%%% 16 
        % Constraints, see help linprog 17 
        Aeq = [Xwt ; ones(size(g_kg))]; % A equality matrix 18 
        beq = [Xsys;                1]; % b equality vector 19 
        LB  = zeros(size(g_kg));        % Lower bound 20 
        UB  =  ones(size(g_kg));        % Upper bound 21 
        % Linprog call to find stable phase proportion 22 
        alph(iT,iP,:) = linprog(g_kg,[],[],Aeq,beq,LB,UB);  23 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 24 

   % Postprocess 25 
   alph_n = squeeze(alph(iT,iP,psc_id==phs_id(1))); 26 
   alph_n(alph_n <1e-5) = 0;  % Remove numerical noise   27 
   alph_n = alph_n/sum(alph_n);% normalize proportions  28 
   % Calculate concentration:  29 

        Can(iT,iP) = sum(alph_n.*Xwt(3,psc_id==phs_id(1))'); 30 
    end 31 
end 32 
% Plot 33 
Can = contourf(T,P,Can’) ; 34 
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An example code to do minimization in presence of a pressure gradient: 
 
clear,clf 1 
% Physics 2 
T      = 800 + 273.15; % Kelvin 3 
P      = 10;           % Kbar 4 
comp   = {'SiO2','Al2O3','CaO','Na2O'};   % components 5 
Xsys   = [60.1710 27.4291 4.2631 8.1367]; % X system with kyanite 6 
phs_id = {'Fsp(C1)'};                     % solution models 7 
dz     = 0.01;                            % discretization step 8 
load_dataset; % Load thermodynamic dataset and Matlab functions 9 
x  = 0:0.1:1; % Spatial coordinate 10 
dP = 0:1:10;  % input delta pressure 11 
% Calculate P-T diagram 12 
for iT = 1:length(T)% Temperature loop 13 
    for iP = 1:length(P) % Pressure loop 14 
        for idP = 1:length(dP) % Pressure variation loop 15 
            % Generate Gibbs energies 16 
            [g_kg(:,idP),Xwt,psc_id] = gcalc_fun(T(iT),P(iP)+dP(idP),phs_id);             17 
            % Generate pressure constraints            18 
            icomp              = 1+(idP-1)*length(psc_id):idP*length(psc_id); 19 
            Pr_id(idP,icomp)   = 1;  % (eq. 4)  20 
            Psys(idP,1)        = 1/length(dP); % P of system (see eq. 4) 21 
            % Compositional constraints 22 
            Xwt_all(:,icomp) = Xwt; % composition of phases (eq. 7) 23 
        end 24 
        g_kg     = g_kg(:)';  25 
        %%%%%% Gibbs minimization %%%%%%%%%%%%%%%%%%%%%%%%%%% 26 
        % Constraints 27 
        Aeq          = [Xwt_all; ones(size(g_kg)); Pr_id];% A matrix 28 
        beq          = [Xsys   ;                1; Psys ];% b vector 29 
        LB           = zeros(size(g_kg)); % Lower bounds 30 
        UB           =  ones(size(g_kg)); % Upper bounds 31 
        % Linprog call to find stable phase proportion 32 
        alph(iT,iP,:) = linprog(g_kg,[],[],Aeq,beq,LB,UB); 33 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                   34 
    end 35 
end 36 
% Postprocess 37 
alph_dP = reshape(alph,length(psc_id),length(dP)); 38 
ind     = psc_id==phs_id(1); 39 
for idP = 1:length(dP) 40 
    phase_mode = alph_dP(ind,idP)./sum(alph_dP(ind,idP)); 41 
    Can(idP)   = sum(phase_mode.*Xwt(3,psc_id==phs_id(1))')*100; 42 
end 43 
subplot(121),plot(x,Can),title('CaO in plag (wt%)') 44 
subplot(122),plot(x,dP ),title('dP (kbar)') 45 
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