Experimental and numerical investigations on the quasi-static structural properties of fibre metal laminates processed by thermoforming
dc.contributor.author
Fischer, Tobias
dc.contributor.author
Grubenmann, Michael
dc.contributor.author
Harhash, Mohamed
dc.contributor.author
Hua, Wei
dc.contributor.author
Heingärtner, Jörg
dc.contributor.author
Hora, Pavel
dc.contributor.author
Palkowski, Heinz
dc.contributor.author
Ziegmann, Gerhard
dc.date.accessioned
2021-01-11T15:35:34Z
dc.date.available
2021-01-05T03:59:23Z
dc.date.available
2021-01-11T15:35:34Z
dc.date.issued
2021-02-15
dc.identifier.issn
0263-8223
dc.identifier.issn
1879-1085
dc.identifier.other
10.1016/j.compstruct.2020.113418
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/459200
dc.description.abstract
Recently, increasing development efforts of components made of fibre metal laminates (FMLs), with thermoplastics due to their numerous advantages are remarkable. One-step adhesion and forming approach is an innovative solution to process such laminates reducing the cycle time and delivering failure-free components simultaneously. Hat shaped sections were the chosen geometry in this paper. This process is described considering the temperature, pressure and time progress in addition to the temperature distribution inside the FMLs in different locations. In order to describe the structural behaviour of the hat profiles, top-hat crashboxes were produced and tested via quasi-static three-point bending tests. The investigations were carried out by experimental and finite element simulation. Several parameters are discussed in detail, the top layer (steel and aluminium), the core layer thickness (0.5 and 1.0 mm) and glass fibre orientations (0°/90° and ±45°). The results revealed that by doubling the core thickness, the forming forces and accordingly the absorbed deformation energy were doubled at reduced weight increase. Comparing the experimental and numerical results for the Al-based FMLs, a good agreement regarding the energy absorption deformation mode and the force–displacement progress was reached. © 2020 Elsevier Ltd.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.subject
Fibre metal laminates
en_US
dc.subject
One-step forming
en_US
dc.subject
Metal/polyamide
en_US
dc.subject
Hybrid materials
en_US
dc.subject
Finite element analysis
en_US
dc.subject
Process modelling
en_US
dc.title
Experimental and numerical investigations on the quasi-static structural properties of fibre metal laminates processed by thermoforming
en_US
dc.type
Journal Article
dc.date.published
2020-12-09
ethz.journal.title
Composite Structures
ethz.journal.volume
258
en_US
ethz.journal.abbreviated
Compos. struct.
ethz.pages.start
113418
en_US
ethz.size
13 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Kidlington
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-01-05T03:59:26Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-01-11T15:35:42Z
ethz.rosetta.lastUpdated
2022-03-29T04:47:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Experimental%20and%20numerical%20investigations%20on%20the%20quasi-static%20structural%20properties%20of%20fibre%20metal%20laminates%20processed%20by%20thermoforming&rft.jtitle=Composite%20Structures&rft.date=2021-02-15&rft.volume=258&rft.spage=113418&rft.issn=0263-8223&1879-1085&rft.au=Fischer,%20Tobias&Grubenmann,%20Michael&Harhash,%20Mohamed&Hua,%20Wei&Heing%C3%A4rtner,%20J%C3%B6rg&rft.genre=article&rft_id=info:doi/10.1016/j.compstruct.2020.113418&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [131591]